2009年高考数学押题卷(含标准答案及解析)

选 择 题 部 分

一、选择题常考考点

⒈ 设全集为R,集合,则有

试题详情

    A.                    B.    

试题详情

    C.  D.

【标准答案】A

试题详情

解答:

试题详情

2.若是正数的充要条件是(   )

试题详情

A.                    B.               C.        D.

【标准答案】D

试题详情

解答:

试题详情

3.在等差数列{a}中,已知a=2,a+a=13,则a+a+a等于(   )

A.40                    B.42                 C.43               D.45

【标准答案】B

试题详情

 在等差数列中,已知得d=3,a5=14,=3a5=42.

 

试题详情

4. 若A、B、C为三个集合,,则一定有(   )

试题详情

A.    B.    C.    D.

【标准答案】A

试题详情

解答: 因为由题意得所以选A

试题详情

5.定义运算,则函数的值域为(   )

试题详情

A.          B.             C.         D.

【标准答案】C

试题详情

 解答:在同一坐标系中作出= 图,知选C.

 

试题详情

6.已知函数的图象过点,则的反函数的图象一定过点(   )

试题详情

A             B               C          D

【标准答案】A.

试题详情

解答:依题意知函数的图象过点,由则函数

试题详情

的图象过点,故函数的反函数图象过点(1,).

试题详情

7.函数+的图象相邻两条对称轴间的距离是,则的一个值是(  )

试题详情

A.                    B.                   C.          D.

【标准答案】C

试题详情

解答:由已知

 

试题详情

8.是共起点的向量,不共线,,则的终点共线的充分必要条件是(   )

试题详情

A.    B.     C.    D.

【标准答案】D.

试题详情

解答:设的终点分别为A、B、C,而A、B、C三点共线的充要条件是存在非零常数,使得,即,于是有

 

试题详情

文本框:  9.定义在(,0)(0,)上的奇函数,在(0,)上为增函数,当x>0时,图像如图所示,则不等式的解集为(   )

试题详情

A.       C.

试题详情

B.    D.

 

【标准答案】A

试题详情

 解答:因为所以x?f(x),即

试题详情

由图知-3或0

 

试题详情

10 已知 ,且非p是非q的充分条件,则a的取值范围为(  )

试题详情

  A.  -1<a<6     B.      C.     D.

【标准答案】 B

解法1

特殊值法验证,

试题详情

取a=-1, ,,非p是非q的充分条件成立,排除A,C;

试题详情

取a=7,, ,非p是非q的充分条件不成立,排除D,选B;

解法2 

集合观念认识充分条件化归子集关系构建不等式组求解,解不等式切入,

试题详情

,选B;

解法3

试题详情

用等价命题 构建不等式组求解, 非p是非q的充分条件等价命题为q是p的充分条件,集合观念认识充分条件化归子集关系构建不等式组求解,解不等式切入,,由q是p的充分条件知

试题详情

11 计算复数(1-i)2等于( )

A.0                    B.2              C. 4i                   D. -4i

【标准答案】

试题详情

解法一:(1-i)2=-2i-=-2i-

=-2i-2i=-4i.

试题详情

解法二:(1-i)2=-2i-=-2i-=-2i-2i=-4i.

故选D.

试题详情

 , 故,选B。

试题详情

12 已知数列{an}的通项公式为an[1]=(n∈N*),数列{bn}满足bn=n?ax'|x=n(其中ax'|x=n表示函数y=ax在x=n时的导数),则(ni=1bi)=(    )
    A、ln3  B、-ln3      C、-3ln3      D、3ln3

【标准答案】

试题详情

解:ax=2×3-x,故ax'=2×3-xln3×(-1)=-2×3-xln3
即  bn=-
记  Tn=ni=1bi=(-2ln3)() ,       ①
∴ 3Tn=(-2ln3)(1+)  。       ②
②-①得:2Tn=(-2ln3)(1+)
可得:Tn=-ln3[(1-]
于是(ni=1bi)=Tn=-ln3.

 

试题详情

13 函数的图象经过原点,且它的导函数的图象是如图所示的一条直线,则的图象不经过(       )

A.第一象限                 B.第二象限         

 C.第三象限                 D.第四象限

【标准答案】

试题详情

解析:由导函数的图象可知所以

试题详情

函数图象的顶点

试题详情

在第一象限,故函数

的图象不经过第二象限。选B。                         

 

试题详情

14 设方程 的两个根为,则 (  )

试题详情

A          B        C       D

【标准答案】

试题详情

由两图象交点的意义,交点的横坐标分别为 不妨设 ,利用方程根适合方程,注意绝对值的意义化为  

如何确定范围?

试题详情

目标函数变形, ,选D.

试题详情

15 函数f (x)=log5(x2+1),  x∈[2, +∞的反函数是        (    )

试题详情

    A.g (x)=( x≥0)            B.g (x)=( x≥1)

试题详情

    C.g (x)=( x≥0)            D.g (x)=( x≥1)

【标准答案】

解法一:令y=log5(x2+1),可得5y= x2+1,

试题详情

x2= 5y-1,  又∵x∈[2, +∞x>0.

试题详情

x=.

试题详情

x≥2,∴x2+1≥5,y=log5(x2+1)≥1.

试题详情

∴函数f (x)=log5(x2+1), x∈[2, +∞的反函数是g (x)= x≥1)。 故选D.

试题详情

解法二:∵ x≥2,∴x2+1≥5,原函数y=log5(x2+1)≥1.

试题详情

由原函数和反函数中xy的对应关系知反函数中的x≥1,排除A、 C,而B中 y=>2, 排除B. 故选D.

解法三:原函数f (x)=log5(x2+1)经过点(2,1),反函数y=g (x)经过点(1,2),以 (1,2)点代入排除A、 B,又原函数中y≥1,从而反函数中x≥1,排除 C,故选D.

16 若函数y=log2|ax-1|的图象的对称轴为x=2,则非零实数a的值是(       )

试题详情

A.-2         B.2         C.            D.

【标准答案】

试题详情

解析:∵y=log2|ax-1|=log2(|a||x|)=log2|x|+ log2|a|,

试题详情

y=log2|ax-1|的图象可由y=log2|x|平移得到,而y=log2|x|的图象的对称轴为x=0, y=log2|ax-1|的图象的对称轴为x=,如图.

 

 

 

 

 

 

 

 

 

试题详情

=2,得a=. 故选C.

 

试题详情

17 已知函数的图象如图所示,那么 (        )

试题详情

A.   

试题详情

B                 

试题详情

C.   

试题详情

D.

【标准答案】

试题详情

解析:,由函数图象的走向可知,单调性是先增后减再增,因此导函数的值应该是随由小到大,先正后负再为正,因此,从函数图象可以确定函数有两个极值点,易知方程有相异的两个实数根且负根的绝对值大,由根与系数的关系可判定,故选B.

说明:本题难度较大,综合性强,如何从图中得出极点及单调性的特点是解决本题的关键,同时又要运用二次函数的性质解题,对一元二次方程根与系数的关系也进行了考查.由单调性开口方向,由极值点得方程的根,由方程的根再判定字母的取值,从中也体现出对学生的思维品质有较高的要求

 

试题详情

18 如图,在平面直角坐标系中,,映射平面上的点对应到另一个平面直角坐标系上的点,则当点沿着折线运动时,在映射的作用下,动点的轨迹是(   )

试题详情

       

       A.                          B.               C.                                D.

 

【标准答案】A

 

试题详情

19 某中学生为了能观看2008年奥运会,从2001年起,每年2月1日到银行将自己积攒的零用钱存入元定期储蓄,若年利率为且保持不变,并约定每年到期存款均自动转为新的一年定期,到2008年将所有的存款及利息全部取回,则可取回钱的总数(元)为                    (    )

试题详情

   A.    B.   C.   D.

【标准答案】D。

 

试题详情

20. 已知向量=(1-,1),=(,1+),且,则锐角等于   (    )

       A.300                     B.450                     C.600                     D.750

【标准答案】

试题详情

B  解析:依题意,∵ , ∴(1-)(1+)-=0,cos2=,cos=,锐角等于450

 

试题详情

21.已知是等差数列,,则过点P (3 ,) ,Q(4 ,)的直线的斜率为             (    )

试题详情

       A.4                        B.                      C.-4                     D.-14

【标准答案】

试题详情

A. 解析:依题意,∵是等差数列,,∴,设公差为d,则d=4,又

 

试题详情

22.直三棱柱ABC―A1B1C1的底面ABC为等腰直角三角形,斜边AB=,侧棱AA1=1,则该三棱柱的外接球的表面积为                                (    )

试题详情

       A.2                    B.3                    C.4                    D.5

【标准答案】B

试题详情

解析:由于直三棱柱ABC―A1B1C1的底面ABC为等腰直角三角形,把直三棱柱ABC―A1B1C1补成正四棱柱,则正四棱柱的体对角线是其外接球的直径,所以外接球半径为,表面积为3.

 

试题详情

23. 等差数列{an}的前n项和为Sn,若S17为一确定常数,则下列各式也为确定常数的是    (   )

      A.a2 + a15                 B. a2?a15 

C.a2 + a9 +a16              D. a2?a9?a16

【标准答案】

试题详情

解析:∵ =为一确定常数,

试题详情

+ 为一确定常数,又+ =  + = 2

试题详情

+ 为一确定常数,故选C。

试题详情

说明:本题是一道基础题,若直接用通项公式和求和公式求解较复杂,解答中应用等差数列的性质+ =+ ,结论巧妙产生,过程简捷,运算简单。

 

试题详情

24 (理科)记二项式(1+2xn展开式的各项系数和为an,其二项式系数和为bn,则等于(    )  

    A.1              B.-1            C.0              D.不存在

【标准答案】  

试题详情

解析:由题意得,于是,。选B。

试题详情

 

试题详情

25. 已知P为圆O外一点(O为圆心),线段PO交圆O于点A,

过点P作圆O的切线PB,切点为B,若劣弧AB等分△POB的面积,

试题详情

且  ∠AOB=弧度,则                                    

试题详情

 A.  tan=      B. tan=2  

试题详情

 C.  sin=2cos    D. 2 sin= cos      

【标准答案】

试题详情

解析:由于劣弧AB等分△POB的面积,所以S=2S,

试题详情

OB?PB=l?OB×2=?OB

试题详情

所以PB=2?OB,则 tan==2.故选B。

 

试题详情

26. O为△ABC的内切圆圆心,且AB=5、BC=4、CA=3,

下列结论中正确的是(    )

试题详情

A.  

试题详情

B. >

试题详情

C. ==   

试题详情

D. <=

【标准答案】

试题详情

解析:作出图形, 如图,数量积的意义是实数作差比大小,

试题详情

-=,由直角三角形C中为直角,

试题详情

<0,故<

试题详情

同理 -=<0,

试题详情

<

试题详情

<<,应选A。

说明:向量的数量积为实数可转化为实数大小的问题,作差借助减法的运算又化归数量积判断,借助几何条件判断数量积符号,充分显示了数量积的本质属性,为向量和实数的相互转化提供了方法和依据。

 

试题详情

27. 已知椭圆的中心在O,右焦点为F,右准线为L,若在L上存在点M,使线段OM的垂直平分线经过点F,则椭圆的离心率的取值范围是(  )

试题详情

       B        C       D   

【标准答案】

试题详情

解析:如果注意到形助数的特点,借助平面几何知识的最值构建使问题简单化,由于线段OM的垂直平分线经过点F,则利用平面几何折线段大于或等于直线段(中心到准线之间的距离),则有 2,选A。

说明:离心率的范围实质为一个不等式关系,如何构建这种不等关系?可以利用方程和垂直平分线性质构建。

利用题设和平面几何知识的最值构建不等式往往使问题简单化,回味本题的探究过程,认识解析几何中“形助数”简化运算的途径。

 

试题详情

28. 在棱长为1的正方体ABCD-ABCD的底面ABCD内取一点E,使AE与AB、AD所成的角都是60°,则线段AE的长为(  )

试题详情

    A.     B.    C.    D.

【标准答案】

试题详情

解析:由∠EAB=∠EAD,则E点必在A1C上,

且E 在面A1C上的射影在AC上为F, 如图,

试题详情

    ∵cos∠FAM==,    

试题详情

∴cos∠BAE==?=cos60°=

试题详情

     ∴cos∠FAE= cos∠AEA= =,则∠AEA=45°,

试题详情

∴△AEA为等腰直角三角形,故AE=

 

试题详情

29.设函数  ,若,则实数的取值范围是     (    )

试题详情

       A.(                B.(-

试题详情

       C.(-                         D.(-

【标准答案】 C

 

试题详情

30. 已知是定义在R上的偶函数,且对于任意,都有,当时,,则函数上的反函数的值为 (    )  

试题详情

  A.     B.3-2     C.5+  D.-1-2

【标准答案】

试题详情

D 解析:由已知

试题详情

(|=

 

                  非 选 择 题 部 分

 

试题详情

1.函数的反函数的对称中心为(1,-1),则实数           .

【标准答案】

试题详情

1   解析: 由已知的对称中心为,则a=1.

试题详情

2.不等式的解集为            .

【标准答案】

试题详情

 

 

试题详情

3.设点P()是函数(x∈()图象的交点,则()(的值是――――――――――――――。

【标准答案】

试题详情

2   解析:依题意,(x∈()图象的交点为(0,0),所以()(的值是2

试题详情

4. 如果随机变量ξN (),且P()=0.4,则P()=   

【标准答案】

试题详情

解析:如果随机变量ξN (),且P()=0.4,

试题详情

 P()=

试题详情

, ∴P()=

试题详情

5. 已知集合为,它的所有的三个元素的子集的和是,则           

【标准答案】

试题详情

解析:因为包含了任意一个元素的三元素集合共个,所以在中,每个元素都出现了次,所以

试题详情

,所以

试题详情

 

试题详情

6.给出下列命题中

试题详情

① 向量满足,则的夹角为

试题详情

>0,是的夹角为锐角的充要条件;

试题详情

③ 将函数y =的图象按向量=(-1,0)平移,得到的图象对应的函数表达式为y =

试题详情

④ 若,则为等腰三角形;

以上命题正确的是                      (注:把你认为正确的命题的序号都填上)

【标准答案】

利用向量的有关概念,逐个进行判断切入,

对于 ① 取特值零向量错误,若前提为非零向量由向量加减法的平行四边形法则与夹角的概念正确;

试题详情

对②取特值夹角为直角错,认识数量积和夹角的关系,命题应为>0,是的夹角为锐角的必要条件;

对于③,注意按向量平移的意义,就是图象向左移1个单位,结论正确;

对于④;向量的数量积满足分配率运算,结论正确;

 

试题详情

7.约束条件:,目标函数的最小值是_________________..\

【标准答案】.0

 

试题详情

8. 已知椭圆的右焦点为作与轴垂直的直线与椭圆相交于点,过点的椭圆的切线轴相交于点,则点的坐标为_________________..

试题详情

【标准答案】 

 

试题详情

9. 已知集合,对它的非空子集A,先将A中的每个元素分别乘以

试题详情

,再求和(如A={1,3,6},可求得和为),则对M的所有非空子集,这些和的总和是_________________.

【标准答案】 96

 

试题详情

10. 对于三次函数

试题详情

定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;

试题详情

定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称。

试题详情

己知,请回答下列问题:

试题详情

(1)求函数的“拐点”的坐标

试题详情

(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)

试题详情

(3)写出一个三次函数,使得它的“拐点”是(不要过程)

【标准答案】

试题详情

(1)依题意,得:

试题详情

。……………………2分

试题详情

    由 ,即。∴,又

试题详情

    ∴的“拐点”坐标是。……………………4分

试题详情

    (2)由(1)知“拐点”坐标是

试题详情

    而=

   

试题详情

    ==

试题详情

由定义(2)知:关于点对称。……………………8分

试题详情

一般地,三次函数的“拐点”是,它就是的对称中心。………………………………………………………………………10分

(或者:任何一个三次函数都有拐点;任何一个三次函数都有对称中心;任何一个三次函数平移后可以是奇函数………)都可以给分

试题详情

(3)或写出一个具体的函数,如。…………12分

试题详情

说明:本题在函数、导数、方程的交汇处命题,具有较强的预测性,而且设问的方式具有较大的开放性,情景新颖.解题的关键是:深刻理解函数“拐点”的定义和函数图像的对称中心的意义。其本质是:任何一个三次函数都有拐点;任何一个三次函数都有对称中心;且任何一个三次函数的拐点就是它的对称中心,即

 

试题详情

11. 已知函数f (x)=x3+ ax2-bx  (a, bR) .

试题详情

(1)若y=f (x)图象上的点(1,)处的切线斜率为4,求y=f (x)的极大值;

(2)若y=f (x)在区间[1,2]上是单调减函数,求a + b的最小值.

【标准答案】

解:(1)∵f ′(x)=x2+2ax-b ,

试题详情

∴ 由题意可知:f ′(1)=4且f (1)= ,

试题详情

解得:…………………………3分

试题详情

f (x)=x3-x23x

f ′(x)=x22x3=(x+1)(x-3).

令f ′(x)=0,得x1=1,x2=3,

    由此可知:

x

(∞,1)

-1

(-1, 3)

3

(3, +∞)

f ’(x)

+

0

0

+

f (x)

f (x)极大5/3

f (x) 极小

试题详情

∴ 当x=-1时, f (x)取极大值.  …………………………6分

(2) ∵y=f (x)在区间[1,2]上是单调减函数,

∴f ′(x)=x2+2ax-b≤0在区间[1,2]上恒成立.

根据二次函数图象可知f ′(1)≤0且f ′(2)≤0,即:

试题详情

也即…………………9分

作出不等式组表示的平面区域如图:

试题详情

当直线z=a+b经过交点P(, 2)时,

试题详情

z=a+b取得最小值z=+2=,

试题详情

z=a+b取得最小值为……………………12分

 

试题详情

12. 已知函数.其中

试题详情

(Ⅰ)若函数的图像的一个公共点恰好在x轴上,求的值;

试题详情

(Ⅱ)若函数图像相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的的值;如果没有,请说明理由.

试题详情

(Ⅲ)若是方程的两根,且满足,证明:当时,

【标准答案】

试题详情

解:(Ⅰ)设函数图像与x轴的交点坐标为(,0),又∵点(,0)也在函数的图像上,∴

试题详情

,∴.(Ⅱ)依题意,,即,整理,得  ,①∵,函数图像相交于不同的两点A、B,∴,即△===(3-1)(--1)>0.∴-1<<.设A(),B(),且<,由①得,=1>0, .设点o到直线的距离为d,

试题详情

.

试题详情

=.

试题详情

∵-1<<,∴当时,有最大值无最小值.(Ⅲ)由题意可知,∴,∴当时,

试题详情

,

试题详情

<0, ∴,综上可知,

 

试题详情

13.已知 函数f(x)=的图像关于原点对称,其中m,n为实常数。

(1)求m , n的值;

(2)试用单调性的定义证明:f (x) 在区间[-2, 2] 上是单调函数;

试题详情

(3)当-2≤x≤2 时,不等式恒成立,求实数a的取值范围。

【标准答案】

(1)由于f(x)图象关于原点对称,则f(x)是奇函数,

试题详情

f(-x)=-f(x) 

试题详情

∴f(x)在[-2,2]上是减函数。

试题详情

(3)由(2)知f(x)在[-2,2]上是减函数,则-2时,

试题详情

故-2不等式f(x)恒成立,

试题详情

 

 

 

 

 

试题详情

14 已知A、B、C是直线l上的三点,向量,,。满足:-[y+2f /(1)]+ln(x+1)=0.

(1)求函数y=f(x)的表达式;

(2)若x>0,证明:f(x)>;

(3)若不等式x2≤f(x2)+m2-2bm-3时,x∈[-1,1]及b∈[-1,1]都恒成立,

求实数m的取值范围.

【标准答案】

(1)∵-[y+2f /(1)]+ln(x+1)=0,∴=[y+2f /(1)]-ln(x+1)

由于A、B、C三点共线 即[y+2f /(1)]+[-ln(x+1)]=1

∴y=f(x)=ln(x+1)+1-2f /(1)

f /(x)=,得f /(1)=,故f(x)=ln(x+1)   4分

(2)令g(x)=f(x)―-,由g/(x)=-=

         ∵x>0,∴g/(x)>0,∴g(x)在(0,+∞)上是增函数

      故g(x)>g(0)=0

           即f(x)> 。         12分

  (3)原不等式等价于x2-f(x2)≤m2-2bm-3。

    令h(x)=x2-f(x2)=x2-ln(1+x2),由h/(x)=x-=

        当x∈[-1,1]时,h(x)max=0,∴m2-2bm-3≥0

令Q(b)=m2-2bm-3,则

解得m≥3或m≤-3  。                             12分

 

试题详情

15  已知集合.其中 为正常数.

试题详情

(I)设,求的取值范围.

试题详情

(II)求证:当时不等式对任意恒成立;

试题详情

(III)求使不等式对任意恒成立的的范围.

【标准答案】

试题详情

(I),当且仅当时等号成立,

试题详情

的取值范围为.(3分)

试题详情

(II) 变形,得

试题详情

.  (5分)

试题详情

,又,∴在上是增函数,

试题详情

所以

试题详情

即当时不等式成立.  (9分)

试题详情

(III)令,则

试题详情

即求使恒成立的的范围.(10分)

试题详情

由(II)知,要使对任意恒成立,必有

试题详情

因此,∴函数上递减,在上递增,                                                         

试题详情

要使函数上恒有,必有

试题详情

,解得.(14分)

说明:二元不等式求最值这是考试大纲的要求,不等式恒成立变形转化为函数值之间的关系,变形换元化归基本的初等函数的复合函数,构造函数的单调性解决,这是函数的一个重要应用,考查了正比例和反比例函数的性质,最后一问的恒成立问题换元后,分离参数化归对号函数单调性解决值域,再构建不等式解参数范围,这是高考命题的热点。

 

试题详情

16. 已知是数列{}的前项和,
(1)分别计算的值;
(2)证明:当≥1时,≥,并指出等号成立条件;
(3)利用(2)的结论,找出一个适当的∈N,使得>2008;
(4)是否存在关于正整数的函数,使得对于大于1的正整数都成立?证明你的结论。

【标准答案】

试题详情

(1)=,
    =,
    =。                        …………2分

试题详情

(2)当≥1时,=(共2n-1项)

试题详情

×2n-1=,当且仅当=1时,等号成立。                           …………4分
(3)由于=1,当≥1时,≥,
于是,要使得ST>2008,只需>2007。
按照第一组21项,第二组22项,……,第项的方式分组,……6分
由(2)可知,每一组的和不小于,且只有=1时等于,
将这样的分组连续取2×2007组,加上a1,共有24015项,
这24015项之和一定大于1+2007=2008,
故只需取=24015,就能使得>2008;                                  …………8分
(注:只要取出的不小于24015,并说出相应理由,都给满分)
(4)设这样的存在,
=2时,有1=Þ
=3时,有Þ

试题详情

猜测 (≥2).下面用数学归纳法证明:
=2,3时,上面已证,猜测正确;
②设 (≥2)时,成立

试题详情

时,猜测也正确。
综上所述,存在,使得对于大于1的正整数都成立。                                                                  …………12分

 

试题详情

17. △ABC中,

(I)求∠C的大小;

试题详情

(Ⅱ)设角A,B,C的对边依次为,若,且△ABC是锐角三角形,求的取值范围.

【标准答案】

试题详情

解:(1)依题意:,即,又

试题详情

∴  ,∴ 

试题详情

(2)由三角形是锐角三角形可得,即

试题详情

     由正弦定理得∴ 

试题详情

∴ 

试题详情

试题详情

试题详情

  ∵   ,∴ 

试题详情

∴      即

 

试题详情

18  在中,.

试题详情

( I)证明:;

试题详情

(Ⅱ)若,求的值.

 

【标准答案】

试题详情

解析:设,则=,,

试题详情

,又,

试题详情

.

试题详情

(2)=,

试题详情

 

试题详情

19

且AM与侧面BCC1所成的角为α;

试题详情

   (Ⅰ)若α在区间上变化,求x的变化范围;

试题详情

   (Ⅱ)若所成的角.

【标准答案】

解:(I)设BC的中点为D,连结AD、DM,在正△ABC中,易知AD⊥BC,又侧面BCC1与底面ABC互相垂直,∴AD⊥平面BCC1,即∠AMD为AM与侧面BCC1所成的角,∴∠AMD=α,

试题详情

    ∴在Rt△ADM中,cosAMD=  依题意BM即为点B到度面ABC的距离,

试题详情

    ∴BM=x,且

试题详情

试题详情

试题详情

x的变化范围是

试题详情

   (II)

试题详情

   

 

20  某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知某学生选修甲

试题详情

而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门的概

试题详情

率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.

试题详情

 (I)记“函数R上的偶函数”为事件A,求事件A的概率;

试题详情

(Ⅱ)求的分布列和数学期望.    

【标准答案】

解:设该学生选修甲、乙、丙的概率分别为x、y、z

试题详情

       依题意得                       …………4分

试题详情

       (1)若函数R上的偶函数,则=0        …………5分

试题详情

       当=0时,表示该学生选修三门功课或三门功课都没选.

试题详情

      

试题详情

       =0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24

试题详情

       ∴事件A的概率为0.24                                                        …………8分

试题详情

   (2)依题意知的的取值为0和2由(1)所求可知

试题详情

P(=0)=0.24 P(=2)=1- P(=0)=0.76

试题详情

的分布列为

试题详情

0

2

P

试题详情

0.24

试题详情

0.76

试题详情

的数学期望为E=0×0.24+2×0.76=1.52                           …………12分

 

试题详情

21.已知椭圆的右准线轴相交于点,右焦点到上顶点的距离为,点是线段上的一个动点.

(I)求椭圆的方程;

试题详情

(Ⅱ)是否存在过点且与轴不垂直的直线与椭圆交于两点,使得,并说明理由.

【标准答案】

试题详情

解析:(1)由题意可知,又,解得

试题详情

椭圆的方程为

试题详情

(2)由(1)得,所以.假设存在满足题意的直线,设的方程为

试题详情

,代入,得

试题详情

,则   ①

试题详情

试题详情

的方向向量为,

试题详情

; 时,,即存在这样的直线;

试题详情

时,不存在,即不存在这样的直线 .

 

试题详情

22.已知函数求:

试题详情

(I)求证:函数的图象关于点中心对称,并求的值;

试题详情

(II)设,且1<a1<2,求证+…+<2.

【标准答案】

试题详情

解:(I)设P(1)是函数的图象上的任一点,则,又关于的对称点是,………………………(1分)

试题详情

试题详情

试题详情

也在函数的图象上,故的图象关于点中心对称. …(4分)

试题详情

试题详情

…………………………(6分)

试题详情

(II)由于.…………(7分)

试题详情

<2,∴1<,同理可得,1<,猜想1<).……………………(8分)

下面用数学归纳法证明:(1)当n=2时,前面已证:

试题详情

(2)假设当1<,又上单调递减,==,这说明时,命题也成立.

试题详情

综上(1)(2)可知1<.……………………………(10分)

试题详情

试题详情

由于1<,∴<1,∴

试题详情

于是<…<)(12分)

试题详情

所以,++…+<1+<2…(13分)

 

试题详情

23. 已知数列的前项和为,且与2的等差中项,数列中,,点在直线上。

试题详情

⑴求的值;

试题详情

⑵求数列的通项

试题详情

⑶ 设,求数列的前n项和

【标准答案】

试题详情

(1)∵与2的等差中项,

试题详情

。                                                       …………1分

试题详情

试题详情

                                      …………3分

试题详情

(2)     

试题详情

         

试题详情

。                            

试题详情

试题详情

∵a1=2,∴。                     …………6分

试题详情

试题详情

           …………8分

试题详情

(3)

试题详情

         …………10分

试题详情

试题详情

因此:,              12分

试题详情

即:

试题详情

。  

                                           …………14分

试题详情

24.在△ABC中角A、B、C的对边分别为设向量

试题详情

(1)  求的取值范围;

试题详情

(2)若试确定实数的取值范围.

【标准答案】

试题详情

解:因为

试题详情

所以,-------------------------------------------1分

试题详情

由正弦定理,得

试题详情

-------------------------------------------------2分

试题详情

所以

试题详情

.--------------------------------------------------------3分

试题详情

    (1)= ------4分

试题详情

        

试题详情

       

试题详情

         因此的取值范围是-----------------------------6分

试题详情

 (2)若,

试题详情

由正弦定理,得--------------8分

试题详情

       设=,则,

试题详情

       所以-------------------------------------------10分

试题详情

试题详情

      所以实数的取值范围为.----------------------------------12分

 

试题详情

25. 已知曲线

试题详情

(1)由曲线上任一点轴作垂线,垂足为,点所成的比为。问:点的轨迹可能是圆吗?请说明理由;

试题详情

(2)如果直线的斜率为,且过点,直线交曲线两点,又,求曲线的方程。

【标准答案】

试题详情

(1)

试题详情

试题详情

       ……… 3分

试题详情

试题详情

                             ……… 6分

试题详情

(2)、

试题详情

试题详情

试题详情

。                            ………10分

试题详情

 , 

试题详情

试题详情

试题详情

试题详情

试题详情

试题详情

。                        ………14 分

 

 

 

 

 

 

[1][1]

试题详情

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网