网址:http://m.1010jiajiao.com/timu_id_314385[举报]
设函数.
(Ⅰ) 当时,求的单调区间;
(Ⅱ) 若在上的最大值为,求的值.
【解析】第一问中利用函数的定义域为(0,2),.
当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);
第二问中,利用当时, >0, 即在上单调递增,故在上的最大值为f(1)=a 因此a=1/2.
解:函数的定义域为(0,2),.
(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);
(2)当时, >0, 即在上单调递增,故在上的最大值为f(1)=a 因此a=1/2.
查看习题详情和答案>>
设函数,其中为自然对数的底数.
(1)求函数的单调区间;
(2)记曲线在点(其中)处的切线为,与轴、轴所围成的三角形面积为,求的最大值.
【解析】第一问利用由已知,所以,
由,得, 所以,在区间上,,函数在区间上单调递减; 在区间上,,函数在区间上单调递增;
第二问中,因为,所以曲线在点处切线为:.
切线与轴的交点为,与轴的交点为,
因为,所以,
, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时,
解:(Ⅰ)由已知,所以, 由,得, 所以,在区间上,,函数在区间上单调递减;
在区间上,,函数在区间上单调递增;
即函数的单调递减区间为,单调递增区间为.
(Ⅱ)因为,所以曲线在点处切线为:.
切线与轴的交点为,与轴的交点为,
因为,所以,
, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时,
所以,的最大值为
查看习题详情和答案>>
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
当时单调递减;当时单调递增,故当时,取最小值
于是对一切恒成立,当且仅当. ①
令则
当时,单调递增;当时,单调递减.
故当时,取最大值.因此,当且仅当时,①式成立.
综上所述,的取值集合为.
(Ⅱ)由题意知,令则
令,则.当时,单调递减;当时,单调递增.故当,即
从而,又
所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使即成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
查看习题详情和答案>>
已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(Ⅰ)求实数的值;
(Ⅱ)求在区间上的最大值;
(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
【解析】第一问当时,,则。
依题意得:,即 解得
第二问当时,,令得,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当时,,则。
依题意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①当时,,令得
当变化时,的变化情况如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
单调递减 |
极小值 |
单调递增 |
极大值 |
单调递减 |
又,,。∴在上的最大值为2.
②当时, .当时, ,最大值为0;
当时, 在上单调递增。∴在最大值为。
综上,当时,即时,在区间上的最大值为2;
当时,即时,在区间上的最大值为。
(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则代入(*)式得:
即,而此方程无解,因此。此时,
代入(*)式得: 即 (**)
令 ,则
∴在上单调递增, ∵ ∴,∴的取值范围是。
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上
查看习题详情和答案>>
已知函数的最小值为0,其中
(Ⅰ)求的值;
(Ⅱ)若对任意的有≤成立,求实数的最小值;
(Ⅲ)证明().
【解析】(1)解: 的定义域为
由,得
当x变化时,,的变化情况如下表:
x |
|||
- |
0 |
+ |
|
极小值 |
因此,在处取得最小值,故由题意,所以
(2)解:当时,取,有,故时不合题意.当时,令,即
令,得
①当时,,在上恒成立。因此在上单调递减.从而对于任意的,总有,即在上恒成立,故符合题意.
②当时,,对于,,故在上单调递增.因此当取时,,即不成立.
故不合题意.
综上,k的最小值为.
(3)证明:当n=1时,不等式左边==右边,所以不等式成立.
当时,
在(2)中取,得 ,
从而
所以有
综上,,
查看习题详情和答案>>