摘要:解:ax=2×3-x.故ax'=2×3-xln3×(-1)=-2×3-xln3 即 bn=- 记 Tn=ni=1bi= . ① ∴ 3Tn= . ② ②-①得:2Tn= 可得:Tn=-ln3[(1-] 于是(ni=1bi)=Tn=-ln3.
网址:http://m.1010jiajiao.com/timu_id_314216[举报]
下列说法中:
(1)y=ax+t(t∈R)的图象可以由y=ax的图象平移得到(a>0且a≠1);
(2)y=2x与y=log2x的图象关于y轴对称;
(3)方程log5(2x+1)=log5(x2-2)的解集为1,3;
(4)函数y=ln(1+x)+ln(1-x)为奇函数;正确的是 .
查看习题详情和答案>>
(1)y=ax+t(t∈R)的图象可以由y=ax的图象平移得到(a>0且a≠1);
(2)y=2x与y=log2x的图象关于y轴对称;
(3)方程log5(2x+1)=log5(x2-2)的解集为1,3;
(4)函数y=ln(1+x)+ln(1-x)为奇函数;正确的是
已知函数f(x)=ex-x (e为自然对数的底数).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|
≤x≤2}且M∩P≠∅,求实数a的取值范围;(3)已知n∈N﹡,且Sn=∫tn[f(x)+x]dx(t为常数,t≥0),是否存在等比数列{bn},使得b1+b2+…bn=Sn;若存在,请求出数列{bn}的通项公式;若不存在,请说明理由.
查看习题详情和答案>>
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|
1 | 2 |
已知y=f(x)是定义在R上奇函数,当x<0时,f(x)=x2+ax,且f(2)=4,
(1)求实数a的值;
(2)求f(x)的表达式;
(3)解不等式f(x2+3)+f(-2x)≥0.
查看习题详情和答案>>
(1)求实数a的值;
(2)求f(x)的表达式;
(3)解不等式f(x2+3)+f(-2x)≥0.
研究问题:“已知关于x的不等式ax2-bx+c>0,解集为(1,2),解关于x的不等式cx2-bx+a>0”有如下解法:
解:由cx2-bx+a>0且x≠0,所以
>0得a(
)2-
+c>0,设
=y,得ay2-by+c>0,由已知得:1<y<2,即1<
<2,∴
<x<1所以不等式cx2-bx+a>0的解集是(
,1).
参考上述解法,解决如下问题:已知关于x的不等式
+
<0的解集是:(-3,-1)∪(2,4),则不等式
+
<0的解集是
查看习题详情和答案>>
解:由cx2-bx+a>0且x≠0,所以
(c×2-bx+a) |
x2 |
1 |
x |
b |
x |
1 |
x |
1 |
x |
1 |
2 |
1 |
2 |
参考上述解法,解决如下问题:已知关于x的不等式
b |
(x+a) |
(x+c) |
(x+d) |
bx |
(ax-1) |
(cx-1) |
(dx-1) |
(-
,-
)∪(
,1)
1 |
2 |
1 |
4 |
1 |
3 |
(-
,-
)∪(
,1)
.1 |
2 |
1 |
4 |
1 |
3 |