【题目】某颜料公司生产 两种产品,其中生产每吨产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一条之内甲、乙、丙三种染料的用量分别不超过50吨,160吨和200吨,如果产品的利润为300元/吨, 产品的利润为200元/吨,则该颜料公司一天之内可获得最大利润为( )
A. 14000元 B. 16000元 C. 18000元 D. 20000元
【题目】已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;
(2)当a=3,b=-9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.
【题目】如图(1)所示,已知四边形是由直角△和直角梯形拼接而成的,其中
.且点为线段的中点, , 现将△沿进行翻折,使得二面角
的大小为,得到图形如图(2)所示,连接,点分别在线段上.
(1)证明: ;
(2)若三棱锥的体积为四棱锥体积的,求点到平面的距离.
【题目】设函数f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线斜率;
(2)求函数的单调区间与极值.
【题目】如图,在几何体中,平面平面,四边形为菱形,且, , ∥, 为中点.
(Ⅰ)求证: ∥平面;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在棱上是否存在点,使 ? 若存在,求的值;若不存在,说明理由.
【题目】如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|,当P在圆上运动时,求点M的轨迹C的方程。
【题目】求适合下列条件的椭圆的标准方程:
(1)以(0,5)和(0,-5)为焦点,且椭圆上一点P到两焦点的距离之和为26;
(2)以椭圆9x2+5y2=45的焦点为焦点,且经过M(2, ).
【题目】小明计划在8月11日至8月20日期间游览某主题公园,根据旅游局统计数据,该主題公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比, 以下为舒适, 为一般, 以上为拥挤),情况如图所示,小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览天.
(1)求小明连续两天都遇上拥挤的概率;
(2)设是小明游览期间遇上舒适的天数,求的分布列和数学期望;
(3)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)
【题目】设△ABC的内角,A,B,C对边的边长分别为a,b,c,且acosB﹣bcosA= c.(1)求 的值;(2)求tan(A﹣B)的最大值.
【题目】在数列{an}中,a1=2,an+1=4an﹣3n+1,n∈N* .(1)证明数列{an﹣n}是等比数列;(2)求数列{an}的前n项和Sn;(3)证明不等式Sn+1≤4Sn , 对任意n∈N*皆成立.