【题目】已知函数 的最小正周期为π.(1)求 的值;(2)求函数f(x)的单调递增区间及其图象的对称轴方程.
【题目】已知椭圆经过点,离心率为,点坐标原点.
(1)求椭圆的标准方程;
(2)过椭圆的左焦点任作一条不垂直于坐标轴的直线,交椭圆于两点,记弦的中点为,过作的垂线交直线于点,证明:点在一条定直线上.
【题目】如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.
【题目】如图,在四棱锥中, 平面.
(1)在线段上确定一点,使得平面平面,并说明理由;
(2)若二面角的大小为,求二面角的余弦值.
【题目】元旦期间,某轿车销售商为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每满万元,可减千元;方案二:金额超过万元(含万元),可摇号三次,其规则是依次装有个幸运号、个吉祥号的一个摇号机,装有个幸运号、个吉祥号的二号摇号机,装有个幸运号、个吉祥号的三号摇号机各摇号一次,其优惠情况为:若摇出个幸运号则打折,若摇出个幸运号则打折;若摇出个幸运号则打折;若没有摇出幸运号则不打折.
(1)若某型号的车正好万元,两个顾客都选中第二中方案,求至少有一名顾客比选择方案一更优惠的概率;
(2)若你评优看中一款价格为万的便型轿车,请用所学知识帮助你朋友分析一下应选择哪种付款方案.
【题目】设点为椭圆的左焦点,直线被椭圆截得弦长为.
(1)求椭圆的方程;
(2)圆与椭圆交于两点, 为线段上任意一点,直线交椭圆于两点为圆的直径,且直线的斜率大于,求的取值范围.
【题目】在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC(1)求A的大小;(2)若sinB+sinC=1,试判断△ABC的形状.
【题目】数列{an}的前n项和记为Sn , a1=1,an+1=2Sn+1(n≥1).(1)求{an}的通项公式;(2)等差数列{bn}的各项为正,其前n项和为Tn , 且T3=15,又a1+b1 , a2+b2 , a3+b3成等比数列,求Tn .
【题目】在平面直角坐标系中,已知以为圆心的圆的方程为: ,以为圆心的圆的方程为: .
(1)若过点的直线沿轴向左平移3个单位,沿轴向下平移4个单位后,回到原来的位置,求直线被圆截得的弦长;
(2)圆是以1为半径,圆心在圆: 上移动的动圆 ,若圆上任意一点分别作圆的两条切线,切点为,求的取值范围
【题目】已知:以点为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.
(1)求证:△OAB的面积为定值; (2)设直线y=-2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.