题目内容

【题目】某颜料公司生产 两种产品,其中生产每吨产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一条之内甲、乙、丙三种染料的用量分别不超过50吨,160吨和200吨,如果产品的利润为300元/吨, 产品的利润为200元/吨,则该颜料公司一天之内可获得最大利润为( )

A. 14000元 B. 16000元 C. 18000元 D. 20000元

【答案】A

【解析】依题意,将题中数据统计如下表所示:

设该公司一天内安排生产产品吨, 产品吨,所获利润为元.依据题意得目标函数为,约束条件为欲求目标函数的最大值,先画出约束条件表示的可行域,如图中阴影部分所示,则点 , 作直线,当移动该直线过点时, 取得最大值,则也取得最大值(也可通过代入凸多边形端点进行计算,比较大小求得).故,所以工厂每天生产产品40吨, 产品10吨时,才可获得最大利润,为14000元.选A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网