故f(α)=
=
=
=
.
(16)(共13分)
解法一:
(Ⅰ)由图象可知,在(-∝,1)上
(x)>0,在(1,2)上
(x)<0.
在(2,+∝)上
(x)>0.
故f(x)在(-∝,1),(2,+∝)上递增,在(1,2)上递减.
因此f(x)在x=1处取得极大值,所以x0=1.
(Ⅱ)
(x)=3ax2+2bx+c,
由
(1)=0,
(2)=0, f(1)=5,
得
解得a=2,b=-9,c=12.
解法二:(Ⅰ)同解法一.
(Ⅱ)设
(x)=m(x-1)(x-2)=mx2-3mx+2m,
又
(x)=3ax2+2bx+c, 所以a=
,b=
f(x)=
由f(l)=5, 即
得m=6.
所以a=2,b=-9,c=12.
(17)(共14分)
解法一:
(Ⅰ)∵ABCD-A1B1C1D1是正四棱柱,∴CC1⊥平面ADCD, ∴BD⊥CC1
∵ABCD是正方形 ∴BD⊥AC 又∵AC,CC1
平面ACC1A1,
且AC∩CC1=C, ∴BD⊥平面ACC1A1.
(Ⅱ) 设BD与AC相交于O,连接C1O. ∵CC1⊥平面ADCD, ∴BD⊥AC,
∴BD⊥C1O, ∴∠C1OC∠是二面角C1-BD-C的平面角,
∴∠C1OC=60o.
连接A1B. ∵A1C1//AC, ∴∠A1C1B是BC1与AC所成的角.
设BC=a,则
∴异面直线BC1与AC所成角的大小为
解法二:
(Ⅰ)建立空间直角坐标系D-xyz,如图.
设AD=a,DD1=b,则有D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),C1(0,a,b),

(Ⅱ)设BD与AC相交于O,连接C1O,则点O坐标为
∴异面直线BC1与AC所成角的大小为
(18)(共13分)
解:记该应聘者对三门指定课程考试及格的事件分别为A,B,C,
则P(A)=0.5,P(B)=0.6,P(C)=0.9.
(Ⅰ) 应聘者用方案一考试通过的概率
p1=P(A·B·
)+P(
·B·C)+P(A·
·C)+P(A·B·C)
=0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9
=0.03+0.27+0.18+0.27
=0.75.
(Ⅱ) 应聘者用方案二考试通过的概率
p2=
P(A·B)+
P(B·C)+
P(A·C)
=
×(0.5×0.6+0.6×0.9+0.5×0.9)
=
×1.29
=0.43
(19)(共14分)
解法一:
(Ⅰ)因为点P在椭圆C上,所以
,a=3.
在Rt△PF1F2中,
故椭圆的半焦距c=
,
从而b2=a2-c2=4,
所以椭圆C的方程为
=1.
(Ⅱ)设A,B的坐标分别为(x1,y1)、(x2,y2).
已知圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1).
从而可设直线l的方程为
y=k(x+2)+1,
代入椭圆C的方程得
(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.
因为A,B关于点M对称.
所以
解得
,
所以直线l的方程为
即8x-9y+25=0.
(经检验,所求直线方程符合题意)
解法二:
(Ⅰ)同解法一.
(Ⅱ)已知圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1).
设A,B的坐标分别为(x1,y1),(x2,y2).由题意x1
x2且
①
②
由①-②得
③
因为A、B关于点M对称,
所以x1+ x2=-4, y1+ y2=2,
代入③得
=
,
即直线l的斜率为
,
所以直线l的方程为y-1=
(x+2),
即8x-9y+25=0.
(经检验,所求直线方程符合题意.)
(20)(共14分)
解:(Ⅰ)由S14=98得2a1+13d=14,
又a11=a1+10d=0,
故解得d=-2,a1=20.
因此,{an}的通项公式是an=22-2n,n=1,2,3…
(Ⅱ)由
得
即
由①+②得-7d<11。
即d>-
。
由①+③得13d≤-1
即d≤-
于是-
<d≤-
又d∈Z,故
d=-1
将④代入①②得10<a1≤12.
又a1∈Z,故a1=11或a1=12.
所以,所有可能的数列{an}的通项公式是
an=12-n和an=13-n,n=1,2,3,…