2. (2011四川重庆,25,10分)某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
|
月份x |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
价格y1(元/件) |
560 |
580 |
600 |
620 |
640 |
660 |
680 |
700 |
720 |
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
![]()
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1 a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)
[答案](1)y1 与x之间的函数关系式为y1=20x+540,
y2与x之间满足的一次函数关系式为y2=10x+630.
(2)去年1至9月时,销售该配件的利润w= p1(1000-50-30-y1)
=(0.1x+1.1)(1000−50−30−20x−540)
=(0.1x+1.1)(380−20x)=-2x2+160x+418
=-2( x-4)2+450,(1≤x≤9,且x取整数)
∵-2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
去年10至12月时,销售该配件的利润w= p2(1000-50-30-y2)
=(-0.1x+2.9)(1000-50-30-10x-630)
=(-0.1x+2.9)(290-10x)=( x-29)2,(10≤x≤12,且x取整数),
当10≤x≤12时,∵x<29,∴自变量x增大,函数值w减小,
∴当x=10时,w最大=361(万元),∵450>361,
∴去年4月销售该配件的利润最大,最大利润为450万元.
(3)去年12月份销售量为:-0.1×12+0.9=1.7(万件),
今年原材料的价格为:750+60=810(元),
今年人力成本为:50×(1+20﹪)=60(元),
由题意,得5×[1000(1+a﹪)-810-60-30]×1.7(1-0.1a﹪)=1700,
设t= a﹪,整理,得10t2-99t+10=0,解得t=,∵972=9409,962=9216,而9401更接近9409.∴=97.
∴t1≈0.1或t2≈9.8,∴a1≈10或a2≈980.
∵1.7(1-0.1a﹪)≥1,∴a2≈980舍去,∴a≈10.
答:a的整数值为10.