0  503  511  517  521  527  529  533  539  541  547  553  557  559  563  569  571  577  581  583  587  589  593  595  597  598  599  601  602  603  605  607  611  613  617  619  623  629  631  637  641  643  647  653  659  661  667  671  673  679  683  689  697  3002 

河南省示范性高中罗山高中2009届高三5月综合测试

数学试题(理)

第Ⅰ卷(选择题,共60分)

试题详情

辽宁省大连23中2009年高考数学第二轮复习秘笈5:

应用型问题

    数学应用性问题是历年高考命题的主要题型之一, 也是考生失分较多的一种题型. 高考中一般命制一道解答题和两道选择填空题.解答这类问题的要害是深刻理解题意,学会文字语言向数学的符号语言的翻译转化,这就需要建立恰当的数学模型,这当中,函数,数列,不等式,排列组合是较为常见的模型,而三角,立几,解几等模型也应在复课时引起重视.

    例1某校有教职员工150人,为了丰富教工的课余生活,每天定时开放健身房和娱乐室。据调查统计,每次去健身房的人有10%下次去娱乐室,而在娱乐室的人有20%下次去健身房.请问,随着时间的推移,去健身房的人数能否趋于稳定?

讲解: 引入字母,转化为递归数列模型.

设第n次去健身房的人数为an,去娱乐室的人数为bn,则.

.

,于是

即      .

.故随着时间的推移,去健身房的人数稳定在100人左右.

上述解法中提炼的模型, 使我们联想到了课本典型习题(代数下册P.132第34题)

已知数列的项满足

           

其中,证明这个数列的通项公式是

 

有趣的是, 用此模型可以解决许多实际应用题, 特别, 2002年全国高考解答题中的应用题(下文例9)就属此类模型.

    例2 某人上午7时乘摩托艇以匀速V千米/小时(4≤V≤20)从A港出发前往50千米处的B港,然后乘汽车以匀速W千米/小时(30≤W≤100)自B港向300千米处的C市驶去,在同一天的16时至21时到达C市, 设汽车、摩托艇所需的时间分别是x小时、y小时,若所需经费元,那么V、W分别为多少时,所需经费最少?并求出这时所花的经费.

    讲解: 题中已知了字母, 只需要建立不等式和函数模型进行求解.

由于

则z最大时P最小.

作出可行域,可知过点(10,4)时, z有最大值38,

    ∴P有最小值93,这时V=12.5,W=30.

    视这是整体思维的具体体现, 当中的换元法是数学解题的常用方法.

    例3 某铁路指挥部接到预报,24小时后将有一场超历史记录的大暴雨,为确保万无一失,指挥部决定在24小时内筑一道归时堤坝以防山洪淹没正在紧张施工的遂道工程。经测算,其工程量除现有施工人员连续奋战外,还需要20辆翻斗车同时作业24小时。但是,除了有一辆车可以立即投入施工外,其余车辆需要从各处紧急抽调,每隔20分钟有一辆车到达并投入施工,而指挥部最多可组织25辆车。问24小时内能否完成防洪堤坝工程?并说明理由.

讲解: 引入字母, 构建等差数列和不等式模型.

由20辆车同时工作24小时可完成全部工程可知,每辆车,每小时的工作效率为,设从第一辆车投入施工算起,各车的工作时间为a1,a2,…, a25小时,依题意它们组成公差(小时)的等差数列,且

,化简可得.

解得.

可见a1的工作时间可以满足要求,即工程可以在24小时内完成.

对照此题与2002年全国高考文科数学解答题中的应用题, 你一定会感觉二者的解法是大同小异的. 学习数学就需要这种将旧模式中的方法迁移为解答新题的有用工具, 这要求你不断的联想, 力求寻找恰当的解题方案.

试题详情

2008年11月

绵阳南山中学2008秋季高2010级半期考试化学(文科)试题

命题人:杜红帅

本试卷分卷Ⅰ和卷Ⅱ两部分。卷Ⅰ 为选择题,卷Ⅱ 为非选择题。本试卷共60分。考试时间为60分钟。

第I卷   选择题部分(40分)

试题详情

河南省示范性高中罗山高中2009届高三5月综合测试

数学试题(文)

第Ⅰ卷(选择题,共60分)

试题详情

辽宁省大连23中2009年高考数学第二轮复习秘笈4:

开放型问题

        数学开放性问题是近年来高考命题的一个新方向,其解法灵活且具有一定的探索性,这类题型按解题目标的操作模式分为:规律探索型,问题探究型,数学建模型,操作设计型,情景研究型.如果未知的是解题假设,那么就称为条件开放题;如果未知的是解题目标,那么就称为结论开放题;如果未知的是解题推理,那么就称为策略开放题.当然,作为数学高考题中的开放题其“开放度”是较弱的,如何解答这类问题,还是通过若干范例加以讲解.

例 1 设等比数列的公比为  ,前 项和为 ,是否存在常数 ,使数列 也成等比数列?若存在,求出常数;若不存在,请  明 理 由.

   讲解 存在型开放题的求解一般是从假设存在入手, 逐步深化解题进程的.

   设存在常数, 使数列 成等比数列.

          

    

     (i) 当  时, 代入上式得

          即=0

, 于是不存在常数 ,使成等比数列.

     (ii) 当 时,, 代 入 上 式 得

    .

       综 上 可 知 ,  存 在 常 数 ,使成等比数列.

   等比数列n项求和公式中公比的分类, 极易忘记公比的 情 形, 可 不 要 忽 视 啊 !

例2  某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.

(1)写出y与x之间的函数关系式;

(2)从第几年开始,该机床开始盈利(盈利额为正值);

 (3 ) 使用若干年后,对机床的处理方案有两种:

 (i )当年平均盈利额达到最大值时,以30万元价格处理该机床;

     (ii )当盈利额达到最大值时,以12万元价格处理该机床,问用哪种方案处理较为合算?请说明你的理由.

讲解 本例兼顾应用性和开放性, 是实际工作中经常遇到的问题.

   (1)

            =.                                    

   (2)解不等式  >0,

得       <x<.

∵ x∈N,  ∴ 3 ≤x≤ 17.

故从第3年工厂开始盈利.

(3)(i) ∵ ≤40

当且仅当时,即x=7时,等号成立.

∴ 到2008年,年平均盈利额达到最大值,工厂共获利12×7+30=114万元.

(ii)  y=-2x2+40x-98= -2(x-10)2 +102,

当x=10时,ymax=102.

故到2011年,盈利额达到最大值,工厂共获利102+12=114万元.

试题详情

河南省示范性高中罗山高中2009届高三5月综合测试

语文试题

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分。共150分,考试时间150分钟。

第Ⅰ卷(选择题    共30分)

试题详情

辽宁省大连23中2009年高考数学第二轮复习秘笈3:

代数推理

数学是“教会年轻人思考”的科学, 针对代数推理型问题, 我们不但要寻求它的解法是什么, 还要思考有没有其它的解法, 更要反思为什么要这样解, 不这样解行吗?我们通过典型的问题, 解析代数推理题的解题思路, 方法和技巧. 在解题思维的过程中, 既重视通性通法的演练, 又注意特殊技巧的作用, 同时将函数与方程, 数形结合, 分类与讨论, 等价与化归等数学思想方法贯穿于整个的解题训练过程当中.

    例1  设函数,已知,时恒有,求a的取值范围.

     讲解: 由

         ,

从而只要求直线L不在半圆C下方时, 直线L 的y截距的最小值.

当直线与半圆相切时,易求得舍去).

.

本例的求解在于 关键在于构造新的函数, 进而通过解几模型进行推理解题, 当中, 渗透着数形结合的数学思想方法, 显示了解题思维转换的灵活性和流畅性.

还须指出的是: 数形结合未必一定要画出图形, 但图形早已在你的心中了, 这也许是解题能力的提升, 还请三思而后行.

    例2 已知不等式对于大于1的正整数n恒成立,试确定a的取值范围.

    讲解: 构造函数,易证(请思考:用什么方法证明呢?)为增函数.

    ∵n是大于1的 正整数,

对一切大于1的正整数恒成立,必须,

这里的构造函数和例1属于同类型, 学习解题就应当在解题活动的过程中不断的逐类旁通, 举一反三, 总结一些解题的小结论. 针对恒成立的问题, 函数最值解法似乎是一种非常有效的同法, 请提炼你的小结论.

    例3  已知函数在区间[-b,1-b]上的最大值为25,求b的值.

    讲解: 由已知二次函数配方, 得

     时,的最大值为4b2+3=25. 

          

      上递增,

       

      上递增,

         .

       关于二次函数问题是历年高考的热门话题, 值得读者在复课时重点强化训练. 针对抛物线顶点横坐标在不在区间[-b,1-b], 自然引出解题形态的三种情况, 这显示了分类讨论的数学思想在解题当中的充分运用. 该分就分, 该合就合, 这种辨证的统一完全依具体的数学问题而定, 需要在解题时灵活把握.

   例4已知

    的单调区间;

    (2)若

    讲解: (1) 对 已 知 函 数 进 行 降 次 分 项 变 形  , 得 ,

    (2)首先证明任意

事实上,

     而

   

           

     

      .

     函 数 与 不 等 式 证 明 的 综 合 题 在 高 考 中 常 考 常 新 , 是 既 考 知 识 又 考 能 力 的 好 题  型 , 在 高 考 备 考 中 有 较 高 的 训 练 价 值.. 针对本例的求解, 你能够想到证明任意采用逆向分析法, 给出你的想法!

     例5  已知函数f(x)=(a>0,a≠1).?

(1) 证明函数f(x)的图象关于点P()对称.?

(2) 令an,对一切自然数n,先猜想使an>n成立的最小自然数a,并证明之.?

(3) 求证:∈N).

讲解: (1)关于函数的图象关于定点P对称, 可采用解几中的坐标证法.

设M(x,y)是f(x)图象上任一点,则M关于P()的对称点为M’(1-x,1-y),?

   

∴M′(1-x,1-y)亦在f(x)的图象上,

故函数f(x)的图象关于点P()对称.?

(2)将f(n)、f(1-n)的表达式代入an的表达式,化简可得an=a猜a=3,

即3>n.?

下面用数学归纳法证明.?

设n=k(k≥2)时,3>k.?

那么n=k+1,3+1>3?3>3k?

又3k-(k+1)=2(k-≥0(k≥2,k∈N)?

∴3>n.?

(3)∵3>k?

∴klg3>2lgk?

令k=1,2,…,n,得n个同向不等式,并相加得:

函数与数列综合型问题在高考中频频出现,是历年高考试题中的一道亮丽的风景线.针对本例,你能够猜想出最小自然数a=3吗? 试试你的数学猜想能力.

    例6 已知二次函数,设方程的两个实根为x1和x2.

   (1)如果,若函数的对称轴为x=x0,求证:x0>-1;

   (2)如果,求b的取值范围.

讲解:(1)设,由, 即

            

(2)由同号.

①若.

,负根舍去)代入上式得

,解得

②若4a-2b+3<0.

同理可求得.

    故当

    对你而言, 本例解题思维的障碍点在哪里, 找找看, 如何排除? 下一次遇到同类问题, 你会很顺利的克服吗? 我们力求做到学一题会一类, 不断提高逻辑推理能力.

   例7 对于函数,若存在成立,则称的不动点。如果函数有且只有两个不动点0,2,且

   (1)求函数的解析式;

   (2)已知各项不为零的数列,求数列通项

   (3)如果数列满足,求证:当时,恒有成立.

  讲解:  依题意有,化简为 由违达定理, 得

               

解得 代入表达式,由

不止有两个不动点,

 

(2)由题设得     (*)

          (**)

由(*)与(**)两式相减得:

   

 

解得(舍去)或,由,若这与矛盾,,即{是以-1为首项,-1为公差的等差数列,

  (3)采用反证法,假设则由(1)知

,有

,而当这与假设矛盾,故假设不成立,.

  关于本例的第(3)题,我们还可给出直接证法,事实上:

  由<0或

  结论成立;

  若,此时从而即数列{}在时单调递减,由,可知上成立.

     比较上述两种证法,你能找出其中的异同吗? 数学解题后需要进行必要的反思, 学会反思才能长进.

    例8 设a,b为常数,:把平面上任意一点

 (a,b)映射为函数

   (1)证明:不存在两个不同点对应于同一个函数;

   (2)证明:当,这里t为常数;

   (3)对于属于M的一个固定值,得,在映射F的作用下,M1作为象,求其原象,并说明它是什么图象.

    讲解: (1)假设有两个不同的点(a,b),(c,d)对应同一函数,即相同,

对一切实数x均成立.

特别令x=0,得a=c;令,得b=d这与(a,b),(c,d)是两个不同点矛盾,假设不成立

故不存在两个不同点对应同函数.

(2)当时,可得常数a0,b0,使

=

由于为常数,设是常数.

从而.

(3)设,由此得

在映射F之下,的原象是(m,n),则M1的原象是

.

消去t得,即在映射F之下,M1的原象是以原点为圆心,为半径的圆.

    本题将集合, 映射, 函数综合为一体, 其典型性和新颖性兼顾, 是一道用“活题考死知识”的好题目, 具有很强的训练价值.

例9  已知函数f(t)满足对任意实数x、y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2.

   (1)求f(1)的值;

   (2)证明:对一切大于1的正整数t,恒有f(t)>t;

   (3)试求满足f(t)=t的整数t的个数,并说明理由.

讲解 (1)为求f(1)的值,需令

.

.

   (2)令(※)

.

,

,

于是对于一切大于1的正整数t,恒有f(t)>t.

   (3)由※及(1)可知.

下面证明当整数.

(※)得

……,

将诸不等式相加得

   .

综上,满足条件的整数只有t=1,.

本题的求解显示了对函数方程f(x+y)=f(x)+f(y)+xy+1中的x、y取特殊值的技巧,这种赋值法在2002年全国高考第(21)题中得到了很好的考查.

例10  已知函数f(x)在(-1,1)上有定义,且满足x、y∈(-1,1) 有

(1)证明:f(x)在(-1,1)上为奇函数;

(2)对数列

(3)求证

    讲解  (1)令

            令 为奇函数. 

   (2), 

    是以-1为首项,2为公比的等比数列.

              

  (3)

              

 而  

     

    本例将函数、方程、数列、不等式等代数知识集于一题,是考查分析问题和解决问题能力的范例. 在求解当中,化归出等比(等差)数列是数列问题常用的解题方法.

 

试题详情

常州市第二中学高二化学期中质量检测试卷  08.11

本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分,考试时间100分钟.

可能用到的相对原子质量:H-1    C-12     N-14    O-16     Cl-35.5

第Ⅰ卷(选择题   共60分)

请将选择题的答案填在第Ⅱ卷的表格中.

试题详情