0  504  512  518  522  528  530  534  540  542  548  554  558  560  564  570  572  578  582  584  588  590  594  596  598  599  600  602  603  604  606  608  612  614  618  620  624  630  632  638  642  644  648  654  660  662  668  672  674  680  684  690  698  3002 

辽宁省大连23中2009年高考数学第二轮复习秘笈8:

数学归纳法

试题详情

2009年全国名校高三模拟试题分类汇编

圆锥曲线

试题详情

海门实验学校08―09年度第一学期高二年级期中考试

化学试题(必修)  

 命题人:吴一平  2008-10-30

1、本试题供非化学班学生使用;满分100,答题时间为60分钟。

2、请将第Ⅰ卷选择题答案填入答题卡中,第Ⅱ卷非选择题答案直接填在试卷上。

第Ⅰ卷(选择题  共69分)

试题详情

2009年全国名校高三模拟试题分类汇编

 圆锥曲线

 

试题详情

辽宁省大连23中2009年高考数学第二轮复习秘笈7:

立体几何

高考立体几何试题一般共有4道(客观题3道, 主观题1道), 共计总分27分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着”多一点思考,少一点计算”的发展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题.

 

    例1  四棱锥P―ABCD的底面是边长为a的正方形,PB⊥面ABCD.

    (1)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;

    (2)证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°

从而只要算出四棱锥的高就行了.

面ABCD,

    ∴BA是PA在面ABCD上的射影.又DA⊥AB,

    ∴PA⊥DA,

    ∴∠PAB是面PAD与面ABCD所成的二面角的平面角,

      ∠PAB=60°.                

      而PB是四棱锥P―ABCD的高,PB=AB?tg60°=a,

     .                                    

(2)不论棱锥的高怎样变化,棱锥侧面PAD与PCD恒为全等三角形.

      作AE⊥DP,垂足为E,连结EC,则△ADE≌△CDE,

      是面PAD与面PCD所成的二面角的平面角.

          设AC与DB相交于点O,连结EO,则EO⊥AC,

                                       

      在

     故平面PAD与平面PCD所成的二面角恒大于90°.                   

    本小题主要考查线面关系和二面角的概念,以及空间想象能力和逻辑推理能力, 具有一定的探索性, 是一道设计新颖, 特征鲜明的好题.

 

(1)求证:AB­1⊥平面CED;

(2)求异面直线AB1与CD之间的距离;

(3)求二面角B1―AC―B的平面角.

讲解:(1)∵D是AB中点,△ABC为等腰直角三角形,∠ABC=900,∴CD⊥AB又AA1⊥平面ABC,∴CD⊥AA1.

∴CD⊥平面A1B1BA  ∴CD⊥AB1,又CE⊥AB1, ∴AB1⊥平面CDE;

(2)由CD⊥平面A1B1BA  ∴CD⊥DE

∵AB1⊥平面CDE  ∴DE⊥AB1

∴DE是异面直线AB1与CD的公垂线段

∵CE=,AC=1 , ∴CD=

(3)连结B1C,易证B1C⊥AC,又BC⊥AC ,

∴∠B1CB是二面角B1―AC―B的平面角.

在Rt△CEA中,CE=,BC=AC=1,

∴∠B1AC=600

,  ∴,

 , ∴.

作出公垂线段和二面角的平面角是正确解题的前提, 当然, 准确地作出应当有严格的逻辑推理作为基石.

例3  如图a―l―是120°的二面角,A,B两点在棱上,AB=2,D在内,三角形ABD是等腰直角三角形,∠DAB=90°,C在内,ABC是等腰直角三角形∠ACB=

(I)                                                            求三棱锥D―ABC的体积;

(2)求二面角D―AC―B的大小;     

(3)求异面直线AB、CD所成的角.

   

  

  讲解:  (1) 过D向平面做垂线,垂足为O,连强OA并延长至E.

为二面角a―l―的平面角..

是等腰直角三角形,斜边AB=2.又D到平面的距离DO=

(2)过O在内作OM⊥AC,交AC的反向延长线于M,连结DM.则AC⊥DM.∴∠DMO  为二面角D―AC―B的平面角. 又在△DOA中,OA=2cos60°=1.且

  (3)在平在内,过C作AB的平行线交AE于F,∠DCF为异面直线AB、CD所成的角.  为等腰直角三角形,又AF等于C到AB的距离,即△ABC斜边上的高,

异面直线AB,CD所成的角为arctg

    比较例2与例3解法的异同, 你会得出怎样的启示? 想想看.

 

    例4

 

 

 

 

                        图①                        图②

 

   讲解:  设容器的高为x.则容器底面正三角形的边长为,

       

                .

    当且仅当 .

故当容器的高为时,容器的容积最大,其最大容积为

对学过导数的同学来讲,三次函数的最值问题用导数求解是最方便的,请读者不妨一试. 另外,本题的深化似乎与2002年全国高考文科数学压轴题有关,还请做做对照. 类似的问题是:

    某企业设计一个容积为V的密闭容器,下部是圆柱形,上部是半球形,当圆柱的底面半径r和圆柱的高h为何值时,制造这个密闭容器的用料最省(即容器的表面积最小).

   例5 已知三棱锥P―ABC中,PC⊥底面ABC,AB=BC,

D、F分别为AC、PC的中点,DE⊥AP于E.

    (1)求证:AP⊥平面BDE;                

(2)求证:平面BDE⊥平面BDF;

(3)若AE∶EP=1∶2,求截面BEF分三棱锥

P―ABC所成两部分的体积比.

讲解:  (1)∵PC⊥底面ABC,BD平面ABC,∴PC⊥BD.

由AB=BC,D为AC的中点,得BD⊥AC.又PC∩AC=C,∴BD⊥平面PAC. 又PA平面、PAC,∴BD⊥PA.由已知DE⊥PA,DE∩BD=D,∴AP⊥平面BDE.

  (2)由BD⊥平面PAC,DE平面PAC,得BD⊥DE.由D、F分别为AC、PC的中点,得DF//AP.

由已知,DE⊥AP,∴DE⊥DF. BD∩DF=D,∴DE⊥平面BDF.

DE平面BDE,∴平面BDE⊥平面BDF.

  (3)设点E和点A到平面PBC的距离分别为h1和h2.则

           h1∶h2=EP∶AP=2∶3,

    

    故截面BEF分三棱锥P―ABC所成两部分体积的比为1∶2或2∶1

值得注意的是, “截面BEF分三棱锥P―ABC所成两部分的体积比”并没有说明先后顺序, 因而最终的比值答案一般应为两个, 希不要犯这种”会而不全”的错误.

例6  已知圆锥的侧面展开图是一个半圆,它被过底面中心O1且平行于母线AB的平面所截,若截面与圆锥侧面的交线是焦参数(焦点到准线的距离)

为p的抛物线.

(1)求圆锥的母线与底面所成的角;

(2)求圆锥的全面积.

    讲解: (1)设圆锥的底面半径为R,母线长为l,

由题意得:,

,

所以母线和底面所成的角为

(2)设截面与圆锥侧面的交线为MON,其中O为截面与

AC的交点,则OO1//AB且

在截面MON内,以OO1所在有向直线为y轴,O为原点,建立坐标系,则O为抛物的顶点,所以抛物线方程为x2=-2py,点N的坐标为(R,-R),代入方程得

R2=-2p(-R),得R=2p,l=2R=4p.

∴圆锥的全面积为.

将立体几何与解析几何相链接, 颇具新意, 预示了高考命题的新动向. 类似请思考如下问题:

     一圆柱被一平面所截,截口是一个椭圆.已知椭圆的

长轴长为5,短轴长为4,被截后几何体的最短侧面母     

线长为1,则该几何体的体积等于         

 

   例7 如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a, DC=a,F、G分别为EB和AB的中点.

(2)求证:AF⊥BD;

 (3) 求二面角B―FC―G的正切值.

讲解: ∵F、G分别为EB、AB的中点,

∴FG=EA,又EA、DC都垂直于面ABC,  FG=DC,

    ∴四边形FGCD为平行四边形,∴FD∥GC,又GC面ABC,

    ∴FD∥面ABC.

(2)∵AB=EA,且F为EB中点,∴AF⊥EB  ①  又FG∥EA,EA⊥面ABC

∴FG⊥面ABC ∵G为等边△ABC,AB边的中点,∴AG⊥GC.

∴AF⊥GC又FD∥GC,∴AF⊥FD  ②

由①、②知AF⊥面EBD,又BD面EBD,∴AF⊥BD.

    (3)由(1)、(2)知FG⊥GB,GC⊥GB,∴GB⊥面GCF.

过G作GH⊥FC,垂足为H,连HB,∴HB⊥FC.

∴∠GHB为二面角B-FC-G的平面角.

易求.

    例8  如图,正方体ABCD―A1B1C1D1的棱长为1,P、Q分别是线段AD1和BD上的点,且

D1P∶PA=DQ∶QB=5∶12.

 

(1) 求证PQ∥平面CDD1C1

 

 

 (2) 求证PQ⊥AD;

 

 

 (3) 求线段PQ的长.

讲解:  (1)在平面AD1内,作PP1∥AD与DD1交于点P1,在平面AC内,作

QQ1∥BC交CD于点Q1,连结P1Q1.

    ∵ ,     ∴PP1QQ1 .?

由四边形PQQ1P1为平行四边形,   知PQ∥P1Q1? ?

而P1Q1平面CDD1C1,  所以PQ∥平面CDD1C1?

(2)AD⊥平面D1DCC1,    ∴AD⊥P1Q1,?

又∵PQ∥P1Q1,   ∴AD⊥PQ.?

(3)由(1)知P1Q1 PQ,

,而棱长CD=1.     ∴DQ1=.  同理可求得 P1D=.

在Rt△P1DQ1中,应用勾股定理, 立得

P1Q1=.?

做为本题的深化, 笔者提出这样的问题: P, Q分别是BD,上的动点,试求的最小值, 你能够应用函数方法计算吗? 试试看. 并与如下2002年全国高考试题做以对照, 你会得到什么启示?

如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF上移动,若CM=BN=

(1)       求MN的长;

(2)       当为何值时,MN的长最小;

(3)       当MN长最小时,求面MNA与面MNB所成的二面角的大小。

 

 

 

 

 

 

 

 

 

 

 

 

 

立体几何知识是复课耗时较多, 而考试得分偏底的题型. 只有放底起点, 依据课本, 熟化知识, 构建空间思维网络, 掌握解三角形的基本工具, 严密规范表述, 定会突破解答立几考题的道道难关.

 

 

 

 

试题详情

2008年11月

绵阳南山中学2008年秋季高2010 级半期考试

化学试题

          命题:张明盛       审核:卿明华

可能用到的相对原子质量: H  1      O  16     Al  27  

第I 卷(选择题,共50 分)

试题详情

辽宁省大连23中2009年高考数学第二轮复习秘笈6:

几何题

    高考解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题), 共计30分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识,  这点值得考生在复课时强化.

 

    例1  已知点T是半圆O的直径AB上一点,AB=2、OT=t  (0<t<1),以AB为直腰作直角梯形,使垂直且等于AT,使垂直且等于BT,交半圆于P、Q两点,建立如图所示的直角坐标系.

(1)写出直线的方程;

   (2)计算出点P、Q的坐标;

   (3)证明:由点P发出的光线,经AB反射后,反射光线通过点Q.                  

 

   讲解:  通过读图,  看出点的坐标.

(1 ) 显然,  于是 直线

的方程为

   (2)由方程组

解出  ;               

   (3),

 

        .

   由直线PT的斜率和直线QT的斜率互为相反数知,由点P发出的光线经点T反射,反射光线通过点Q.

    需要注意的是, Q点的坐标本质上是三角中的万能公式, 有趣吗?

例2  已知直线l与椭圆有且仅有一个交点Q,且与x轴、y轴分别交于R、S,求以线段SR为对角线的矩形ORPS的一个顶点P的轨迹方程.

   讲解:从直线所处的位置, 设出直线的方程,

   由已知,直线l不过椭圆的四个顶点,所以设直线l的方程为

代入椭圆方程

         

化简后,得关于的一元二次方程

            

于是其判别式

由已知,得△=0.即  ①

在直线方程中,分别令y=0,x=0,求得

 令顶点P的坐标为(x,y),  由已知,得

 代入①式并整理,得 ,  即为所求顶点P的轨迹方程.

    方程形似椭圆的标准方程, 你能画出它的图形吗?

   例3已知双曲线的离心率,过的直线到原点的距离是

 (1)求双曲线的方程;

 (2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.

  讲解:∵(1)原点到直线AB:的距离.

     故所求双曲线方程为

(2)把中消去y,整理得 .

     设的中点是,则

    

  

故所求k=±.

为了求出的值, 需要通过消元, 想法设法建构的方程.

   例4 已知椭圆C的中心在原点,焦点F1、F2在x轴上,点P为椭圆上的一个动点,且∠F1PF2的最大值为90°,直线l过左焦点F1与椭圆交于A、B两点,△ABF2的面积最大值为12.

  (1)求椭圆C的离心率;

  (2)求椭圆C的方程.

   讲解:(1)设, 对 由余弦定理, 得

 

解出  

 (2)考虑直线的斜率的存在性,可分两种情况:

   i) 当k存在时,设l的方程为………………①

  椭圆方程为

 由   得   .

于是椭圆方程可转化为  ………………②

将①代入②,消去得     ,

整理为的一元二次方程,得       .

则x1、x2是上述方程的两根.且

也可这样求解:

 

AB边上的高

  

ii) 当k不存在时,把直线代入椭圆方程得

 

由①②知S的最大值为  由题意得=12  所以   

  故当△ABF2面积最大时椭圆的方程为:

下面给出本题的另一解法,请读者比较二者的优劣:

设过左焦点的直线方程为:…………①

(这样设直线方程的好处是什么?还请读者进一步反思反思.)

椭圆的方程为:

得:于是椭圆方程可化为:……②

把①代入②并整理得:

于是是上述方程的两根.

,

AB边上的高,

从而

     

当且仅当m=0取等号,即

    由题意知,  于是  .

    故当△ABF2面积最大时椭圆的方程为:

   例5  已知直线与椭圆相交于A、B两点,且线段AB的中点在直线上.

(1)求此椭圆的离心率;

(2 )若椭圆的右焦点关于直线的对称点的在圆上,求此椭圆的方程.

 

   讲解:(1)设A、B两点的坐标分别为

,   

根据韦达定理,得            

  

 ∴线段AB的中点坐标为(). 

 由已知得

  故椭圆的离心率为 .

 (2)由(1)知从而椭圆的右焦点坐标为关于直线的对称点为

解得     

由已知得

故所求的椭圆方程为 .

   例6   已知⊙M:轴上的动点,QA,QB分别切⊙M于A,B两点,

   (1)如果,求直线MQ的方程;

   (2)求动弦AB的中点P的轨迹方程.

文本框:     讲解:(1)由,可得由射影定理,得   在Rt△MOQ中,

 

    故

    所以直线AB方程是

  (2)连接MB,MQ,设

点M,P,Q在一直线上,得

由射影定理得

把(*)及(**)消去a,并注意到,可得

   适时应用平面几何知识,这是快速解答本题的要害所在,还请读者反思其中的奥妙.

    例7   如图,在Rt△ABC中,∠CBA=90°,AB=2,AC=。DO⊥AB于O点,OA=OB,DO=2,曲线E过C点,动点P在E上运动,且保持| PA |+| PB |的值不变.

(1)建立适当的坐标系,求曲线E的方程;

(2)过D点的直线L与曲线E相交于不同的两点M、N且M在D、N之间,设

 

 

                       

   试确定实数的取值范围.

讲解: (1)建立平面直角坐标系, 如图所示 .                                     

    ∵| PA |+| PB |=| CA |+| CB |                                        y

 C

A     O         B

                                                                                 

∴曲线E的方程是  .

   (2)设直线L的方程为 , 代入曲线E的方程,得

       

设M1,  则

 

 

i)  L与y轴重合时,                         

ii)  L与y轴不重合时,

  由①得  

  又∵,

  或 

∴0<<1 ,                                           

 

.                 

  ∴

                           

,

的取值范围是 .   

    值得读者注意的是,直线L与y轴重合的情况易于遗漏,应当引起警惕.

    例8  直线过抛物线的焦点,且与抛物线相交于A两点.

   (1)求证:;

   (2)求证:对于抛物线的任意给定的一条弦CD,直线l不是CD的垂直平分线.

                

  讲解: (1)易求得抛物线的焦点.

  若l⊥x轴,则l的方程为.

若l不垂直于x轴,可设,代入抛物线方程整理得             .

综上可知  .

(2)设,则CD的垂直平分线的方程为

假设过F,则整理得

     

.

这时的方程为y=0,从而与抛物线只相交于原点. 而l与抛物线有两个不同的交点,因此与l不重合,l不是CD的垂直平分线.

    此题是课本题的深化,你能够找到它的原形吗?知识在记忆中积累,能力在联想中提升. 课本是高考试题的生长点,复课切忌忘掉课本!

 

    例9 某工程要将直线公路l一侧的土石,通过公路上的两个道口A和B,沿着道路AP、BP运往公路另一侧的P处,PA=100m,PB=150m,∠APB=60°,试说明怎样运土石最省工?

    讲解: 以直线l为x轴,线段AB的中点为原点对立直角坐标系,则在l一侧必存在经A到P和经B到P路程相等的点,设这样的点为M,则

      |MA|+|AP|=|MB|+|BP|,

即   |MA|-|MB|=|BP|-|AP|=50,

,

∴M在双曲线的右支上.

故曲线右侧的土石层经道口B沿BP运往P处,曲线左侧的土石层经道口A沿AP运往P处,按这种方法运土石最省工.

相关解析几何的实际应用性试题在高考中似乎还未涉及,其实在课本中还可找到典型的范例,你知道吗?

解析几何解答题在历年的高考中常考常新, 体现在重视能力立意, 强调思维空间, 是用活题考死知识的典范. 考题求解时考查了等价转化, 数形结合, 分类讨论, 函数与方程等数学思想, 以及定义法, 配方法, 待定系数法, 参数法, 判别式法等数学通法.

 

 

试题详情

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网