6. (2011山东济宁,22,8分)数学课上,李老师出示了这样一道题目:如图,正方形的边长为为边延长线上的一点,的中点,的垂直平分线交边,交边的延长线于.当时,的比值是多少?

经过思考,小明展示了一种正确的解题思路:过作直线平行于分别于,如图,则可得:,因为,所以.可求出的值,进而可求得的比值.

(1) 请按照小明的思路写出求解过程.

(2) 小东又对此题作了进一步探究,得出了的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.

(1)解:过作直线平行于分别于点

.

,∴.····························································································· 2分

.

. ···································································································· 4分

(2)证明:作于点,················································································ 5分

.

.

.∴.······························································ 7分

.····················································································································· 8分

3. (2011福建福州,21,12分)已知,矩形中,,,的垂直平分线分别交于点,垂足为.

  (1)如图10-1,连接.求证四边形为菱形,并求的长;

(2)如图10-2,动点分别从两点同时出发,沿各边匀速运动一周.即点停止,点停止.在运动过程中,

①已知点的速度为每秒5,点的速度为每秒4,运动时间为秒,当四点为顶点的四边形是平行四边形时,求的值.

②若点的运动路程分别为(单位:,),已知四点为顶点的四边形是平行四边形,求满足的数量关系式.

[答案](1)证明:①∵四边形是矩形

,

垂直平分,垂足为

∴四边形为平行四边形

又∵

∴四边形为菱形

②设菱形的边长,则

中,

由勾股定理得,解得

(2)①显然当点在上时,点在上,此时四点不可能构成平行四边形;同理点在上时,点在上,也不能构成平行四边形.因此只有当点在上、点在上时,才能构成平行四边形

   ∴以四点为顶点的四边形是平行四边形时,

∵点的速度为每秒5,点的速度为每秒4,运动时间为

,

,解得

∴以四点为顶点的四边形是平行四边形时,秒.

②由题意得,以四点为顶点的四边形是平行四边形时,点在互相平行的对应边上.

分三种情况:

i)如图1,当点在上、点在上时,,即,得

ii)如图2,当点在上、点在上时,, 即,得

iii)如图3,当点在上、点在上时,,即,得

综上所述,满足的数量关系式是 

24.

23.

 0  49556  49564  49570  49574  49580  49582  49586  49592  49594  49600  49606  49610  49612  49616  49622  49624  49630  49634  49636  49640  49642  49646  49648  49650  49651  49652  49654  49655  49656  49658  49660  49664  49666  49670  49672  49676  49682  49684  49690  49694  49696  49700  49706  49712  49714  49720  49724  49726  49732  49736  49742  49750  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网