35. (2011江苏盐城,27,12分)

情境观察

将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点DA(A′)、B在同一条直线上,如图2所示.

观察图2可知:与BC相等的线段是    ,∠CAC′=    °.

问题探究

如图3,△ABC中,AGBC于点G,以A为直角顶点,分别以ABAC为直角边,向△ABC外作等腰RtABE和等腰RtACF,过点EF作射线GA的垂线,垂足分别为PQ. 试探究EPFQ之间的数量关系,并证明你的结论.

拓展延伸

如图4,△ABC中,AGBC于点G,分别以ABAC为一边向△ABC外作矩形ABME和矩形ACNF,射线GAEF于点H. 若AB= k AEAC= k AF,试探究HEHF之间的数量关系,并说明理由.

[答案]情境观察

AD(或A′D)90 

问题探究

结论:EP=FQ. 

证明:∵△ABE是等腰三角形,∴AB=AE,∠BAE=90°.

∴∠BAG+∠EAP=90°.∵AGBC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.

EPAG,∴∠AGB=∠EPA=90°,∴RtABGRtEAP. ∴AG=EP.

同理AG=FQ.  ∴EP=FQ.

拓展延伸

结论: HE=HF. 

理由:过点EEPGA,FQ⊥GA,垂足分别为P、Q.

∵四边形ABME是矩形,∴∠BAE=90°,

∴∠BAG+∠EAP=90°.AGBC,∴∠BAG+∠ABG=90°,

∴∠ABG=∠EAP.

∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴ = .

同理△ACG∽△FAQ,∴ = .

AB= k AEAC= k AF,∴ = = k,∴ = . ∴EP=FQ.

∵∠EHP=∠FHQ,∴RtEPHRtFQH. ∴HE=HF.

34. (2011湖南永州,25,10分)探究问题:

⑴方法感悟:

如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.

感悟解题方法,并完成下列填空:

将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:

AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,点G,B,F在同一条直线上.

∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

∵∠1=∠2,  ∴∠1+∠3=45°.

即∠GAF=∠_________.

又AG=AE,AF=AF

∴△GAF≌_______.

∴_________=EF,故DE+BF=EF.

⑵方法迁移:

如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.

⑶问题拓展:

如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).

[答案]⑴EAF、△EAF、GF.

⑵DE+BF=EF,理由如下:

假设∠BAD的度数为,将△ADE绕点A顺时针旋转得到△ABG,此时AB与AD重合,由旋转可得:

AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,点G,B,F在同一条直线上.

∵∠EAF=  ∴∠2+∠3=∠BAD-∠EAF=

∵∠1=∠2,  ∴∠1+∠3=

即∠GAF=∠EAF

又AG=AE,AF=AF

∴△GAF≌△EAF.

∴GF=EF,

又∵GF=BG+BF=DE+BF   ∴DE+BF=EF.

⑶当∠B与∠D互补时,可使得DE+BF=EF.

33. (2011湖北襄阳,25,10分)

如图9,点P是正方形ABCDAB上一点(不与点AB重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PEPE交边BC于点F,连接BEDF.

(1)求证:∠ADP=∠EPB

(2)求∠CBE的度数;

(3)当的值等于多少时,△PFD∽△BFP?并说明理由.

[答案]

(1)证明:∵四边形ABCD是正方形

∴∠A=∠PBC=90°,ABAD,∴∠ADP+∠APD=90°················ 1分

∵∠DPE=90°  ∴∠APD+∠EPB=90°

∴∠ADP=∠EPB.········································································································ 2分

(2)过点EEGABAB的延长线于点G,则∠EGP=∠A=90°·· 3分

又∵∠ADP=∠EPBPDPE,∴△PAD≌△EGP

EGAPADABPG,∴APEGBG················································· 4分

∴∠CBE=∠EBG=45°.························································································· 5分

(3)方法一:

时,△PFE∽△BFP.·············································································· 6分

∵∠ADP=∠FPB,∠A=∠PBF,∴△ADP∽△BPF······························ 7分

ADABa,则APPB,∴BFBP····················· 8分

··········································································································· 9分

又∵∠DPF=∠PBF=90°,∴△ADP∽△BFP·········································· 10分

方法二:

假设△ADP∽△BFP,则.·································································· 6分

∵∠ADP=∠FPB,∠A=∠PBF,∴△ADP∽△BPF··························· 7分

,··············································································································· 8分

,··············································································································· 9分

PBAP,   ∴当时,△PFE∽△BFP.   10分

 0  49559  49567  49573  49577  49583  49585  49589  49595  49597  49603  49609  49613  49615  49619  49625  49627  49633  49637  49639  49643  49645  49649  49651  49653  49654  49655  49657  49658  49659  49661  49663  49667  49669  49673  49675  49679  49685  49687  49693  49697  49699  49703  49709  49715  49717  49723  49727  49729  49735  49739  49745  49753  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网