11.我们知道“在三角形每一顶点处各取一个外角,它们的和就是这个三角形的外角和”.如图7-36,完成下列问题.

图7-36

(1)你能求出三角形的外角和等于多少吗?证明你的结论.

(2)如果将三角形三条边都向两边延长,并在每两条延长线上任取两点连结起来,那么在原三角形外又得到三个新三角形,如图所示,猜想∠A、∠B、∠C、∠D、∠E、∠F的和是多少?

(3)请用(1)的结论证明(2)的猜想.

(4)对于(2)的证明你还有其他的方法吗?请写出来与同伴交流.

答案:(1)三角形外角和等于360°.

已知:如图△ABC,∠4,∠5,∠6是外角.

求证:∠4+∠5+∠6=360°.

证明:∵∠4是外角,∴∠2+∠3=∠4.

同理,∠1+∠3=∠5,∠2+∠1=∠6,

∴∠4+∠5+∠6=(∠2+∠3)+(∠1+∠3)+(∠2+∠1)=2(∠1+∠2+∠3).

∵∠1+∠2+∠3=180°,

∴∠4+∠5+∠6=2×180°=360°.

(2)如图,∠A+∠B+∠C+∠D+∠E+∠F=360°.

(3)∵∠4是△ABN的外角(已知),

∴∠A+∠B=∠4(三角形任一外角等于与其不相邻的两内角和).

同理,∠C+∠D=∠5,∠E+∠F=∠6,

∴∠4+∠5+∠6=(∠A+∠B)+(∠C+∠D)+(∠E+∠F).

由(1)得∠4+∠5+∠6=360°,

∴∠A+∠B+∠C+∠D+∠E+∠F=360°(等量代换).

(4)∵∠A+∠B+∠ANB=180°,∠C+∠D+∠CHD=180°,∠E+∠F+∠EMF=180°,

∴∠A+∠B+∠ANB+∠C+∠D+∠CHD+∠E+∠F+∠EMF=180°×3=540°.

∵∠ANB=∠HNM,∠CHD=∠MHN,∠EMF=∠HMN,∠HNM+∠MHN+∠HMN=180°,

∴∠A+∠B+∠C+∠D+∠E+∠F=360°.

 0  48817  48825  48831  48835  48841  48843  48847  48853  48855  48861  48867  48871  48873  48877  48883  48885  48891  48895  48897  48901  48903  48907  48909  48911  48912  48913  48915  48916  48917  48919  48921  48925  48927  48931  48933  48937  48943  48945  48951  48955  48957  48961  48967  48973  48975  48981  48985  48987  48993  48997  49003  49011  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网