19.(本小题满分14分,第一小问满分4分,第二小问满分5分,第三小问满分5分)

在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)

(Ⅰ)求证:A1E⊥平面BEP;

(Ⅱ)求直线A1E与平面A1BP所成角的大小;

(Ⅲ)求二面角B-A1P-F的大小(用反三角函数表示)

 

[考点分析:本题主要考查线面垂直、直线和平面所成的角、二面角等基础知识,以及空间线面位置关系的证明、角和距离的计算等,考查空间想象能力、逻辑推理能力和运算能力]

[解]不妨设正三角形的边长为3,则

(I)在图1中,取BE的中点D,连结DF,

∵AE∶EB=CF∶FA=1∶2,∴AF=AD=2,而∠A=60o,∴△ADF为正三角形。

又AE=DE=1,∴EF⊥AD。

在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1-EF-B的一个平面角,

由题设条件知此二面角为直二面角,∴A1E⊥BE。

又BEEF=E,∴A1E⊥面BEF,即A1E⊥面BEP。

(II)在图2中,∵A1E不垂直于A1B,∴A1E是面A1BP的斜线,又A1E⊥面BEP,∴A1E⊥BP,∴BP垂直于A1E在面A1BP内的射影(三垂线定理的逆定理)

设A1E在面A1BP内的射影为A1Q,且A1Q交BP于Q,

则∠EA1Q就是A1E与面A1BP所成的角,且BP⊥A1Q。

在△EBP中,∵BE=BP=2,∠EBP=60o,∴△EBP为正三角形,∴BE=EP。

又A1E⊥面BEP,∴A1B=A1P,∴Q为BP的中点,且EQ=,而A1E=1,

∴在Rt△A1EQ中,,即直线A1E与面A1BP所成角为60o

(III)在图3中,过F作FM于M,连结QM、QF。

∵CF=CP=1,∠C=60o,∴△FCP为正三角形,故PF=1,

又PQ=BP=1,∴PF=PQ……①

∵A1E⊥面BEP,EQ=EF=,∴A1F=A1Q,

∴△A1FP△A1QP,故∠A1PF=∠A1PQ……②

由①②及MP为公共边知△FMP△QMP,故∠QMP=∠FMP=90o,且MF=MQ,

∴∠FMQ为二面角B-A1P-F的一个平面角。

在Rt△A1QP中,A1Q=A1F=2,PQ=1,∴A1P=

∵MQ⊥A1P,∴MQ=,∴MF=

在△FCQ中,FC=1,QC=2,∠C=60o,由余弦定理得QF=

在△FMQ中,

∴二面角B-A1P-F的的大小为

[注]此题还可以用向量法来解。(略)

 0  446780  446788  446794  446798  446804  446806  446810  446816  446818  446824  446830  446834  446836  446840  446846  446848  446854  446858  446860  446864  446866  446870  446872  446874  446875  446876  446878  446879  446880  446882  446884  446888  446890  446894  446896  446900  446906  446908  446914  446918  446920  446924  446930  446936  446938  446944  446948  446950  446956  446960  446966  446974  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网