摘要:21. 设数列..满足:.(n=1,2,3,-). 证明:为等差数列的充分必要条件是为等差数列且(n=1,2,3,-) [考点分析:本题主要考查等差数列.充要条件等基础知识.考查综合运用数学知识分析问题和解决问题的能力] [证明]必要性:设数列是公差为的等差数列.则: ==-=0. ∴(n=1,2,3,-)成立, 又=6(n=1,2,3,-) ∴数列为等差数列. 充分性:设数列是公差为的等差数列.且(n=1,2,3,-). ∵--① ∴--② ①-②得:= ∵ ∴--③ 从而有--④ ④-③得:--⑤ ∵... ∴由⑤得:(n=1,2,3,-). 由此.不妨设(n=1,2,3,-).则 故--⑥ 从而--⑦ ⑦-⑥得:. 故(n=1,2,3,-). ∴数列为等差数列. 综上所述:为等差数列的充分必要条件是为等差数列且(n=1,2,3,-).
网址:http://m.1010jiajiao.com/timu3_id_4468773[举报]
(本小题满分14分)已知递增数列满足:, ,且、、成等比数列。(I)求数列的通项公式;(II)若数列满足: ,且。①证明数列是等比数列,并求数列的通项公式;②设,数列前项和为, ,。当时,试比较A与B的大小。
查看习题详情和答案>>(本小题满分14分)设数列的前项和为,且,其中为常数,且、0.(1)证明:数列是等比数列;(2)设数列的公比,数列满足,求数列的通项公式;(3)设,数列的前项和为,求证:当时,
查看习题详情和答案>>(本小题满分14分)已知递增数列满足:, ,且、、成等比数列。(I)求数列的通项公式;(II)若数列满足: ,且。①证明数列是等比数列,并求数列的通项公式;②设,数列前项和为, ,。当时,试比较A与B的大小。
查看习题详情和答案>>