20.(本小题满分12分)

如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.

  (Ⅰ)求证AE⊥平面BCE;

(Ⅱ)求二面角B-AC-E的大小;

(Ⅲ)求点D到平面ACE的距离.

                 

解法一:(Ⅰ) ∵BF⊥平面ACE,∴BF⊥AE,∵二面角D-AB-E为直二面角,且CB⊥AB,

∴CB⊥平面ABE,∴CB⊥AE,∴AE⊥平面BCE

(Ⅱ)连结BD交AC于G,连结FG,∵正方形ABCD边长为2,∴BG⊥AC,BG=,

∵BF⊥平面ACE,由三垂线定理的逆定理得FG⊥AC,∴∠BCF是二面角B-AC-E的平面角,

由(Ⅰ)AE⊥平面BCE,∴AE⊥EB.又∵AE=EB,∴在等腰直角三角形中,BE=.

又∵直角三角形BCE中,EC=,BF=

∴直角三角形BFG中,sin∠BGF=,∴二面角B-AC-E等于arcsin.

,(Ⅲ)过E作EO⊥AB交AB于O,OE=1,∵二面角D-AB-E为直二面角,∴EO⊥平面ABCD.

设D到平面ACE的距离为h,∵,∴.

∵AE⊥平面BCE,∴AE⊥EC.∴h=.

∴点D点D到平面ACE的距离为.

解法二:(Ⅰ)同解法一.

(Ⅱ)以线段AB的中点为原点O,OE所在直线为x轴,AB所在直线为y轴,过O点平行于AD的直线为z轴,建立空间直角坐标系O-xyz,如图

∵AE⊥平面BCE,BE面BCE,∴AE⊥BE,在直角三角形AEB中,AB=2,O为AB的中点

∴OE=1,A(0,-1,0),E(1,0,0),C(0,1,2),

                   设平面AEC的一个法向量=(x,y,z),则解得

令x=1,得=(1,-1,1)是平面EAC的一个法向量,又平面BAC的一个法向量为=(1,0,0),  

∴cos()=

∴二面角B-AC-E的大小为arccos.

(Ⅲ)∵AD∥z轴,AD=2,∴,∴点D到平面ACE的距离

d=||.

 0  446809  446817  446823  446827  446833  446835  446839  446845  446847  446853  446859  446863  446865  446869  446875  446877  446883  446887  446889  446893  446895  446899  446901  446903  446904  446905  446907  446908  446909  446911  446913  446917  446919  446923  446925  446929  446935  446937  446943  446947  446949  446953  446959  446965  446967  446973  446977  446979  446985  446989  446995  447003  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网