25、(2011•滨州)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A、B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.

(1)请建立适当的直角坐标系,求抛物线的函数解析式;

(2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)

(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(请写出求解过程)

考点:二次函数的应用。

分析:(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系,可设抛物线的函数解析式为y=ax2,又由点A在抛物线上,即可求得此抛物线的函数解析式;

(2)延长AC,交建筑物造型所在抛物线于点D,连接BD交OC于点P,则点P即为所求;

(3)首先根据题意求得点B与D的坐标,设直线BD的函数解析式为y=kx+b,利用待定系数法即可求得直线BD的函数解析式,把x=0代入y=﹣x+4,即可求得点P的坐标.

解答:解:(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系,

设抛物线的函数解析式为y=ax2

由题意知点A的坐标为(4,8).

∵点A在抛物线上,

∴8=a×42

解得a=

∴所求抛物线的函数解析式为:y=x2

(2)找法:

延长AC,交建筑物造型所在抛物线于点D,

则点A、D关于OC对称.

连接BD交OC于点P,则点P即为所求.

(3)由题意知点B的横坐标为2,

∵点B在抛物线上,

∴点B的坐标为(2,2),

又∵点A的坐标为(4,8),

∴点D的坐标为(﹣4,8),

设直线BD的函数解析式为y=kx+b,

解得:k=﹣1,b=4.

∴直线BD的函数解析式为y=﹣x+4,

把x=0代入y=﹣x+4,得点P的坐标为(0,4),

两根支柱用料最省时,点O、P之间的距离是4米.

点评:此题考查了二次函数的实际应用问题.解此题的关键是根据题意构建二次函数模型,然后根据二次函数解题.

23、(2011•滨州)根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC恰好分割成两个等腰三角形(不写做法,但需保留作图痕迹);并根据每种情况分别猜想:∠A与∠B有怎样的数量关系时才能完成以上作图?并举例验证猜想所得结论.

(1)如图①△ABC中,∠C=90°,∠A=24°

①作图:

②猜想:

③验证:

(2)如图②△ABC中,∠C=84°,∠A=24°.

①作图:

②猜想:

③验证:

考点:作图-复杂作图。

分析:(1)①痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A(或∠BCD=∠B)两类方法均可,

②利用各角之间的关系得出∠A+∠B=90°;

③可根据△ABC中,∠A=30°,∠B=60°时,有∠A+∠B=90°,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线.

(2)①痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A或在线段CA上截取CD=CB三种方法均可.

②利用各角之间的关系得出∠B=3∠A;

③利用特殊角∠A=32°,∠B=96,有∠B=3∠A,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线.

解答:解:(1)①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A(或∠BCD=∠B)两类方法均可,

在边AB上找出所需要的点D,则直线CD即为所求(2分)

②猜想:∠A+∠B=90°,(4分)

③验证:如在△ABC中,∠A=30°,∠B=60°时,有∠A+∠B=90°,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线.(5分)

(2)答:①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A或在线段CA上截取CD=CB三种方法均可.

在边AB上找出所需要的点D,则直线CD即为所求(6分)

②猜想:∠B=3∠A(8分)

③验证:如在△ABC中,∠A=32°,∠B=96,有∠B=3∠A,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线.(9分).

点评:此题主要考查了垂直平分线的作法以及垂直平分线的性质和三角形内角和定理的应用,根据垂直平分线的性质作出图形是解决问题的关键.

 0  49380  49388  49394  49398  49404  49406  49410  49416  49418  49424  49430  49434  49436  49440  49446  49448  49454  49458  49460  49464  49466  49470  49472  49474  49475  49476  49478  49479  49480  49482  49484  49488  49490  49494  49496  49500  49506  49508  49514  49518  49520  49524  49530  49536  49538  49544  49548  49550  49556  49560  49566  49574  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网