12.(08湖南长沙)26.如图,六边形ABCDEF内接于半径为r(常数)的⊙O,其中AD为直径,且AB=CD=DE=FA.

(1)当∠BAD=75°时,求的长;

(2)求证:BC∥AD∥FE;

(3)设AB=,求六边形ABCDEF的周长L关于的函数关系式,并指出为何值时,L取得最大值.

(08湖南长沙26题解析)26.(1)连结OB、OC,由∠BAD=75°,OA=OB知∠AOB=30°, (1分)

∵AB=CD,∴∠COD=∠AOB=30°,∴∠BOC=120°,······································ (2分)

故的长为.··························································································· (3分)

(2)连结BD,∵AB=CD,∴∠ADB=∠CBD,∴BC∥AD,······························· (5分)

同理EF∥AD,从而BC∥AD∥FE.································································ (6分)

(3)过点B作BM⊥AD于M,由(2)知四边形ABCD为等腰梯形,

从而BC=AD-2AM=2r-2AM.··········································································· (7分)

∵AD为直径,∴∠ABD=90°,易得△BAM∽△DAB

∴AM==,∴BC=2r-,同理EF=2r-············································ (8分)

∴L=4x+2(2r-)==,其中0<x< ·········· (9分)

∴当x=r时,L取得最大值6r.······································································ (10分)

13(08湖南益阳)七、(本题12分)

11.(08湖北咸宁)24.(本题(1)-(3)小题满分12分,(4)小题为附加题另外附加2分)

如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿ABCD匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.

(1)  当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;

(2) 求正方形边长及顶点C的坐标;

(3) 在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.

(1)  附加题:(如果有时间,还可以继续

解答下面问题,祝你成功!)

如果点P、Q保持原速度速度不

变,当点P沿ABCD

速运动时,OPPQ能否相等,

若能,写出所有符合条件的t

值;若不能,请说明理由.

(08湖北咸宁24题解析)24.解:(1)(1,0)  -----------------------------1分

       点P运动速度每秒钟1个单位长度.-------------------------------3分

     (2) 过点BFy轴于点轴于点,则=8,.

       ∴.

       在Rt△AFB中,.----------------------------5分

      过点轴于点,与的延长线交于点.

∴△ABF≌△BCH.

 .

.

∴所求C点的坐标为(14,12).------------7分

     (3) 过点PPMy轴于点MPN轴于点N

则△APM∽△ABF.

      .  .

 ∴.  ∴.

设△OPQ的面积为(平方单位)

(0≤≤10)  ------------------10分

    说明:未注明自变量的取值范围不扣分.

 ∵<0  ∴当时, △OPQ的面积最大.------------11分

     此时P的坐标为() .  ---------------------------------12分

   (4)  时,  OPPQ相等.---------------------------14分

     对一个加1分,不需写求解过程.

7.(08湖北荆门)28.(本小题满分12分)

已知抛物线y=ax2+bx+c的顶点Ax轴上,与y轴的交点为B(0,1),且b=-4ac

 (1) 求抛物线的解析式;

(2) 在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;

(3) 根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?

 

(08湖北荆门28题解析)28.解:(1)由抛物线过B(0,1) 得c=1.

     又b=-4ac,  顶点A(-,0),

     ∴-==2c=2.∴A(2,0).    ………………………………………2分

     将A点坐标代入抛物线解析式,得4a+2b+1=0 ,   

 ∴  解得a =,b =-1.

     故抛物线的解析式为y=x2-x+1.    ………………………………………4分

     另解: 由抛物线过B(0,1) 得c=1.又b2-4ac=0,  b=-4ac,∴b=-1.  ………2分

     ∴a=,故y=x-x+1.       ……………………………………………4分

  (2)假设符合题意的点C存在,其坐标为C(xy),        

     作CDx轴于D ,连接ABAC

  ∵A在以BC为直径的圆上,∴∠BAC=90°.

     ∴ △AOB∽△CDA

     ∴OB·CD=OA·AD

     即1·y=2(x-2), ∴y=2x-4.   ……………………6分

     由    解得x1=10,x2=2.

∴符合题意的点C存在,且坐标为 (10,16),或(2,0).  ………………………8分

    ∵P为圆心,∴PBC中点.

     当点C坐标为 (10,16)时,取OD中点P1 ,连PP1 , 则PP1为梯形OBCD中位线.

PP1=(OB+CD)=.∵D (10,0), ∴P1 (5,0), ∴P (5, ). 

     当点C坐标为 (2,0)时, 取OA中点P2 ,连PP2 , 则PP2为△OAB的中位线.

PP2=OB=.∵A (2,0), ∴P2(1,0), ∴P (1,). 

故点P坐标为(5, ),或(1,).  ……………………………………10分

(3)设BPC三点的坐标为B(x1,y1), P(x2,y2), C(x3,y3),由(2)可知:

         ………………………………………12分                                            

 0  47924  47932  47938  47942  47948  47950  47954  47960  47962  47968  47974  47978  47980  47984  47990  47992  47998  48002  48004  48008  48010  48014  48016  48018  48019  48020  48022  48023  48024  48026  48028  48032  48034  48038  48040  48044  48050  48052  48058  48062  48064  48068  48074  48080  48082  48088  48092  48094  48100  48104  48110  48118  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网