10、将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a,甲、乙分到同一组的概率为p,则a、p的值分别为( A )
B. a=105 p= B.a=105 p= C.a=210 p= D.a=210 p=
解:a==105
甲、乙分在同一组的方法种数有
(1) 若甲、乙分在3人组,有=15种
(2) 若甲、乙分在2人组,有=10种,故共有25种,所以P=
故选A
故选B
9、P是双曲线的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为( D )
A. 6 B.7 C.8 D.9
解:设双曲线的两个焦点分别是F1(-5,0)与F2(5,0),则这两点正好是两圆的圆心,当且仅当点P与M、F1三点共线以及P与N、F2三点共线时所求的值最大,此时
|PM|-|PN|=(|PF1|-2)-(|PF2|-1)=10-1=9故选B
8、在(x-)2006 的二项展开式中,含x的奇次幂的项之和为S,当x=时,S等于(B )
A.23008 B.-23008 C.23009 D.-23009
解:设(x-)2006=a0x2006+a1x2005+…+a2005x+a2006
则当x=时,有a0()2006+a1()2005+…+a2005()+a2006=0 (1)
当x=-时,有a0()2006-a1()2005+…-a2005()+a2006=23009 (2)
7、已知等差数列{an}的前n项和为Sn,若,且A、B、C三点共线(该直线不过原点O),则S200=( A )
A.100 B. 101 C.200 D.201
解:依题意,a1+a200=1,故选A
6、若不等式x2+ax+1³0对于一切xÎ(0,)成立,则a的取值范围是( C )
A.0 B. –2 C.- D.-3
解:设f(x)=x2+ax+1,则对称轴为x=
若³,即a£-1时,则f(x)在(0,)上是减函数,应有f()³0Þ
-£x£-1
若£0,即a³0时,则f(x)在(0,)上是增函数,应有f(0)=1>0恒成立,故a³0
若0££,即-1£a£0,则应有f()=恒成立,故-1£a£0
综上,有-£a故选C
5、对于R上可导的任意函数f(x),若满足(x-1)³0,则必有( C )
C. f(0)+f(2)<2f(1) B. f(0)+f(2)£2f(1)
C. f(0)+f(2)³2f(1) D. f(0)+f(2)>2f(1)
解:依题意,当x³1时,f¢(x)³0,函数f(x)在(1,+¥)上是增函数;当x<1时,f¢(x)£0,f(x)在(-¥,1)上是减函数,故f(x)当x=1时取得最小值,即有
f(0)³f(1),f(2)³f(1),故选C
4、设O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若=-4
则点A的坐标是(B )
A.(2,±2) B. (1,±2) C.(1,2)D.(2,2)
解:F(1,0)设A(,y0)则=( ,y0),=(1-,-y0),由
· =-4Þy0=±2,故选B
3、若a>0,b>0,则不等式-b<<a等价于( D )
A.<x<0或0<x< B.-<x< C.x<-或x> D.x<或x>
解:
故选D
2、已知复数z满足(+3i)z=3i,则z=( D )
A. B. C. D.
解:故选D
1、已知集合M={x|},N={y|y=3x2+1,xÎR},则MÇN=( C )
A.Æ B. {x|x³1} C.{x|x>1} D. {x| x³1或x<0}
解:M={x|x>1或x£0},N={y|y³1}故选C