20.(本小题满分12分)
如图,在长方体ABCD-A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为
.
[思路点拨]本题涉及立体几何线面关系的有关知识,
[正确解答]解法(一)
(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E
(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1=
,AD1=
,
故

(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,
∴∠DHD1为二面角D1-EC-D的平面角.
设AE=x,则BE=2-x


解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)
(1)
(2)因为E为AB的中点,则E(1,1,0),从而
,
,设平面ACD1的法向量为
,则
也即
,得
,从而
,所以点E到平面AD1C的距离为

(3)设平面D1EC的法向量
,∴
由
令b=1,
∴c=2,a=2-x,
∴
依题意
∴
(不合,舍去),
.
∴AE=
时,二面角D1-EC-D的大小为
.
[解后反思]立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求解角度和距离,在求此类问题中,尽量要将这些量处于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较好写出来.