摘要:22. 如图.设抛物线的焦点为F.动点P在直线上运动.过P作抛物线C的两条切线PA.PB.且与抛物线C分别相切于A.B两点. (1)求△APB的重心G的轨迹方程. (2)证明∠PFA=∠PFB. [思路点拨]本题涉及解析几何中直线与抛物线的若干知识. [正确解答](1)设切点A.B坐标分别为. ∴切线AP的方程为: 切线BP的方程为: 解得P点的坐标为: 所以△APB的重心G的坐标为 . 所以.由点P在直线l上运动.从而得到重心G的轨迹方程为: (2)方法1:因为 由于P点在抛物线外.则 ∴ 同理有 ∴∠AFP=∠PFB. 方法2:①当所以P点坐标为.则P点到直线AF的距离为: 即 所以P点到直线BF的距离为: 所以d1=d2.即得∠AFP=∠PFB. ②当时.直线AF的方程: 直线BF的方程: 所以P点到直线AF的距离为: .同理可得到P点到直线BF的距离.因此由d1=d2.可得到∠AFP=∠PFB. [解后反思]解析几何主要的是点和曲线的位置关系.对称性.标准方程当中系数对位置的影响.圆锥曲线的定义和几何性质,解析几何的解答题往往是高档题.常常涉及的内容是求轨迹方程.直线和圆锥曲线的位置关系.对称.最值.范围.做这类题目一定要认真细心,提高自己的运算能力和思维能力.
网址:http://m.1010jiajiao.com/timu3_id_4469170[举报]
(本小题满分14分)
如图,过抛物线的对称轴上任一点作直线与抛物线交于两点,点是点关于原点的对称点.
(1) 设点分有向线段所成的比为,证明:;
(2) 设直线的方程是,过两点的圆与抛物线在点处有共同的切线,求圆的方程.
如图,过抛物线的对称轴上任一点作直线与抛物线交于两点,点是点关于原点的对称点.
(1) 设点分有向线段所成的比为,证明:;
(2) 设直线的方程是,过两点的圆与抛物线在点处有共同的切线,求圆的方程.
(本小题满分14分)
设椭圆方程为抛物线方程为如图4所示,过点作轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。
查看习题详情和答案>>(本小题满分14分)
设椭圆方程为抛物线方程为如图4所示,过点作轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。
查看习题详情和答案>>