25、(2011•重庆)某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
|
月份x |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
价格y1(元/件) |
560 |
580 |
600 |
620 |
640 |
660 |
680 |
700 |
720 |
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.
(参考数据:992=9901,982=9604,972=9409,962=9216,952=9025)
考点:二次函数的应用;一元二次方程的应用;一次函数的应用。
专题:应用题;分类讨论。
分析:(1)把表格(1)中任意2点的坐标代入直线解析式可得y1的解析式.把(10,730)(12,750)代入直线解析式可得y2的解析式,;
(2)分情况探讨得:1≤x≤9时,利润=P1×(售价﹣各种成本);10≤x≤12时,利润=P2×(售价﹣各种成本);并求得相应的最大利润即可;
(3)根据1至5月的总利润1700万元得到关系式求值即可.
解答:解:(1)设y1=kx+b,
则
,
解得
,
∴y1=20x+540(1≤x≤9,且x取整数);
设y2=ax+b,则
,
解得
,
∴y2=10x+630(10≤x≤12,且x取整数);
(2)设去年第x月的利润为W元.
1≤x≤9,且x取整数时,W=P1×(1000﹣50﹣30﹣y1)=﹣2x2+16x+418=﹣2(x﹣4)2+450,
∴x=4时,W最大=450元;
10≤x≤12,且x取整数时,W=P2×(1000﹣50﹣30﹣y2)=(x﹣29)2,
∴x=10时,W最大=361元;
(3)去年12月的销售量为﹣0.1×12+2.9=1.7(万件),
今年原材料价格为:750+60=810(元)
今年人力成本为:50×(1+20%)=60元.
∴5×[1000×(1+a%)﹣810﹣60﹣30]×1.7(1﹣0.1×a%)=1700,
设t=a%,整理得10t2﹣99t+10=0,
解得t=
,
∵9401更接近于9409,
∴
≈97,
∴t1≈0.1,t2≈9.8,
∴a1≈10或a2≈980,
∵1.7(1﹣0.1×a%)≥1,
∴a≈10.
答:a的整数解为10.
点评:本题综合考查了一次函数和二次函数的应用;根据二次函数的最值及相应的求值范围得到一定范围内的最大值是解决本题的易错点;利用估算求得相应的整数解是解决本题的难点.