21. (山东卷)已知
是函数
的一个极值点,其中
,
(I)求
与
的关系式;
(II)求
的单调区间;
(III)当
时,函数
的图象上任意一点的切线斜率恒大于3
,求
的取值范围.
解(I)
因为
是函数
的一个极值点,所以
,即
,所以![]()
(II)由(I)知,
=![]()
当
时,有
,当
变化时,
与
的变化如下表:
|
|
|
|
|
1 |
|
|
|
|
0 |
|
0 |
|
|
|
|
|
|
|
|
|
|
调调递减 |
极小值 |
单调递增 |
极大值 |
单调递减 |
故有上表知,当
时,
在
单调递减,在
单调递增,在
上单调递减.
(III)由已知得
,即![]()
又
所以
即
①
设
,其函数开口向上,由题意知①式恒成立,
所以
解之得
又
所以![]()
即
的取值范围为![]()
13. ( 全国卷III)已知函数
,![]()
(Ⅰ)求
的单调区间和值域;
(Ⅱ)设
,函数
,若对于任意
,总存在
,使得
成立,求
的取值范围
解:对函数
求导,得
![]()
![]()
令
解得
或![]()
当
变化时,
、
的变化情况如下表:
|
x |
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
所以,当
时,
是减函数;当
时,
是增函数;
当
时,
的值域为![]()
(Ⅱ)对函数
求导,得
![]()
因此
,当
时, ![]()
因此当
时,
为减函数,从而当
时有
![]()
又
,
,即当
时有
![]()
任给
,
,存在
使得
,则
![]()
即![]()
解
式得
或![]()
解
式得 ![]()
又
,
故:
的取值范围为![]()