11. (全国卷Ⅱ)已知a≥ 0 ,函数f(x) = (
-2ax )
(1) 当X为何值时,f(x)取得最小值?证明你的结论;
(2)设 f(x)在[ -1,1]上是单调函数,求a的取值范围.
解:(I)对函数
求导数得![]()
令
得[
+2(1-
)
-2
]
=0从而
+2(1-
)
-2
=0
解得
![]()
当
变化时,
、
的变化如下表
|
|
|
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
递增 |
极大值 |
递减 |
极小值 |
递增 |
∴
在
=
处取得极大值,在
=
处取得极小值。
当
≥0时,
<-1,![]()
在
上为减函数,在
上为增函数
而当
时
=
,当x=0时,![]()
所以当
时,
取得最小值
(II)当
≥0时,
在
上为单调函数的充要条件是![]()
即
,解得![]()
![]()
于是
在[-1,1]上为单调函数的充要条件是![]()
即
的取值范围是![]()
10.(全国卷Ⅱ)设a为实数,函数
(Ⅰ)求
的极值.
(Ⅱ)当a在什么范围内取值时,曲线
轴仅有一个交点.
解:(I)
=3
-2
-1
若
=0,则
==-
,
=1
当
变化时,
,
变化情况如下表:
|
|
(-∞,- |
- |
(- |
1 |
(1,+∞) |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
极大值 |
|
极小值 |
|
∴
的极大值是
,极小值是![]()
(II)函数![]()
由此可知,取足够大的正数时,有
>0,取足够小的负数时有
<0,所以曲线
=
与
轴至少有一个交点
结合
的单调性可知:
当
的极大值
<0,即
时,它的极小值也小于0,因此曲线
=
与
轴仅有一个交点,它在(1,+∞)上。
当
的极小值
-1>0即![]()
(1,+∞)时,它的极大值也大于0,因此曲线
=
与
轴仅有一个交点,它在(-∞,-
)上。
∴当
∪(1,+∞)时,曲线
=
与
轴仅有一个交点。