12.(2010·南通模拟)已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值,
(1)求a,b的值与函数f(x)的单调区间;
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.
解:(1)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b,
由f′(-)=-a+b=0,f′(1)=3+2a+b=0得a=-,b=-2,
f′(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:
|
x |
(-∞,-) |
- |
(-,1) |
1 |
(1,+∞) |
|
f′(x) |
+ |
0 |
- |
0 |
+ |
|
f(x) |
|
极大值 |
|
极小值 |
|
所以函数f(x)的递增区间是(-∞,-)与(1,+∞),递减区间(-,1);
(2)f(x)=x3-x2-2x+c,x∈[-1,2],当x=-时,f(-)=+c为极大值,而f(2)=2+c,则f(2)=2+c为最大值,要使f(x)<c2,x∈[-1,2]恒成立,则只需要c2>f(2)=2+c,得c<-1,或c>2.
8.(文)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为,若x=时,y=f(x)有极值,
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
解:(1)由f(x)=x3+ax2+bx+c,得
f′(x)=3x2+2ax+b.
当x=1时,切线l的斜率为3,可得2a+b=0. ①
当x=时,y=f(x)有极值,则f′()=0,可得
4a+3b+4=0. ②
由①②解得a=2,b=-4.
设切线l的方程为y=3x+m.
由原点到切线l的距离为,则=,
解得m=±1.
∵切线l不过第四象限,∴m=1.
由于切点的横坐标为x=1,∴f(1)=4.
∴1+a+b+c=4,∴c=5;
(2)由(1)可得f(x)=x3+2x2-4x+5,
∴f′(x)=3x2+4x-4.
令f′(x)=0,得x=-2,x=.
f(x)和f′(x)的变化情况如下表:
|
x |
[-3,-2) |
-2 |
(-2,) |
|
(,1] |
|
f′(x) |
+ |
0 |
- |
0 |
+ |
|
f(x) |
|
极大值 |
|
极小值 |
|
∴f(x)在x=-2处取得极大值f(-2)=13,
在x=处取得极小值f()=.
又f(-3)=8,f(1)=4,
∴f(x)在[-3,1]上的最大值为13,最小值为.
(理)已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处的切线方程是y=5x-10.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.
解:(1)由已知,切点为(2,0),故有f(2)=0,
即4b+c+3=0. ①
f′(x)=3x2+4bx+c,由已知,f′(2)=12+8b+c=5.
得8b+c+7=0. ②
联立①、②,解得c=1,b=-1,
于是函数解析式为f(x)=x3-2x2+x-2.
(2)g(x)=x3-2x2+x-2+mx,
g′(x)=3x2-4x+1+,令g′(x)=0.
当函数有极值时,Δ≥0,方程3x2-4x+1+=0有实根,
由Δ=4(1-m)≥0,得m≤1.
①当m=1时,g′(x)=0有实根x=,在x=左右两侧均有g′(x)>0,故函数g(x)无极值.
②当m<1时,g′(x)=0有两个实根,
x1=(2-),x2=(2+),
当x变化时,g′(x)、g(x)的变化情况如下表:
|
x |
(-∞,x1) |
x1 |
(x1,x2) |
x2 |
(x2,+∞) |
|
g′(x) |
+ |
0 |
- |
0 |
+ |
|
g(x) |
? |
极大值 |
? |
极小值 |
? |
故在m∈(-∞,1)时,函数g(x)有极值;
当x=(2-)时g(x)有极大值;
当x=(2+)时g(x)有极小值.
|
题组三 |
导数的综合应用 |