解:(1)解方程,得.………………1分

     ∴点,点

     ∴

     解,得

∴抛物线的解析式为.·················································· 2分

(2)∵抛物线与y轴交于点C

    ∴点C的坐标为(0,2).

    又点,可求直线BC的解析式为

ADCB,∴设直线AD的解析式为

又点,∴,直线AD的解析式为

     解,得

∴点D的坐标为(4,).·········································································· 4分

过点DDD’轴于D’DD’,则又AB=4.

∴四边形ACBD的面积ABOC+ABDD’······························ 5分

(3)假设存在满足条件的点R,设直线ly轴于点E(0,m),

∵点P不与点AC重合,∴0< m <2,∵点,点

∴可求直线AC的解析式为,∴点

∵直线BC的解析式为,∴点

.在△PQR中,

①当RQ为底时,过点PPR1x轴于点R1,则∠R1PQ=90°,PQPR1m

,解得,∴点

∴点R1坐标为(,0).··········································································· 6分

②当RP为底时,过点QQ R2x轴于点R2

同理可求,点R2坐标为(1,0).································································ 7分

③当PQ为底时,取PQ中点S,过SSR3PQx轴于点R3,则PR3QR3,∠PR3Q=90°.∴PQ=2R3S=2m.∴,解,得

∴点,点,可求点R3坐标为(,0). …………………8分

经检验,点R1,点R2,点R3都满足条件.

综上所述,存在满足条件的点R,它们分别是R1(,0),R2(1,0)和点R3(,0).

 0  47053  47061  47067  47071  47077  47079  47083  47089  47091  47097  47103  47107  47109  47113  47119  47121  47127  47131  47133  47137  47139  47143  47145  47147  47148  47149  47151  47152  47153  47155  47157  47161  47163  47167  47169  47173  47179  47181  47187  47191  47193  47197  47203  47209  47211  47217  47221  47223  47229  47233  47239  47247  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网