9、(湖北荆门)如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点POA边上的动点(与点OA不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PDPF重合.

(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;

(2)如图2,若翻折后点D落在BC边上,求过点PBE的抛物线的函数关系式;

(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

解:(1)由已知PB平分∠APDPE平分∠OPF,且PDPF重合,则∠BPE=90°.∴∠OPE+∠APB=90°.又∠APB+∠ABP=90°,∴∠OPE=∠PBA

∴Rt△POE∽Rt△BPA.……………………………………………………………………2分

.即.∴y=(0<x<4).

且当x=2时,y有最大值.………………………………………………………………4分

(2)由已知,△PAB、△POE均为等腰三角形,可得P(1,0),E(0,1),B(4,3).……6分

设过此三点的抛物线为y=ax2+bx+c,则

y=.……………………………………………………………………………8分

(3)由(2)知∠EPB=90°,即点Q与点B重合时满足条件.………………………………9分

直线PBy=x-1,与y轴交于点(0,-1).

PB向上平移2个单位则过点E(0,1),

∴该直线为y=x+1.………………………………………………………………………10分

∴Q(5,6).

故该抛物线上存在两点Q(4,3)、(5,6)满足条件.……………………………………12分

6、(贵阳)如图14,从一个直径是2的圆形铁皮中剪下一个圆心角为的扇形.

(1)求这个扇形的面积(结果保留).(3分)

(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.(4分)

(3)当的半径为任意值时,(2)中的结论是否仍然成立?请说明理由.(5分)

解:(1)连接,由勾股定理求得:

·································································· 1分

································································· 2分

(2)连接并延长,与弧交于

····························································································· 1分

的长:······················································································ 2分

圆锥的底面直径为:··················································································· 3分

不能在余料③中剪出一个圆作为底面与此扇形围成圆锥.·············· 4分

(3)由勾股定理求得:

的长:···················································································· 1分

圆锥的底面直径为:················································································ 2分

···································································································· 3分

即无论半径为何值,··················································································· 4分

不能在余料③中剪出一个圆作为底面与此扇形围成圆锥.

4、(福州)如图12,已知直线与双曲线交于两点,且点的横坐标为

(1)求的值;

(2)若双曲线上一点的纵坐标为8,求的面积;

(3)过原点的另一条直线交双曲线两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标.

解:(1)∵点A横坐标为4 ,  ∴当  = 4时, = 2 .

∴ 点A的坐标为( 4,2 ).                

∵ 点A是直线    与双曲线    (k>0)的交点 ,

k = 4 ×2 = 8 .          

(2) 解法一:如图12-1,

∵ 点C在双曲线上,当 = 8时, = 1

∴ 点C的坐标为 ( 1, 8 ) .                

过点A、C分别做轴、轴的垂线,垂足为MN,得矩形DMON .

S矩形ONDM= 32 , S△ONC = 4 , S△CDA = 9, S△OAM =  4 .       

S△AOC= S矩形ONDM - S△ONC - S△CDA - S△OAM = 32 - 4 - 9 - 4 = 15 .   

解法二:如图12-2,

过点  CA分别做轴的垂线,垂足为E、F

∵ 点C在双曲线上,当 = 8时, = 1 .

∴ 点C的坐标为 ( 1, 8 ).     

∵ 点C、A都在双曲线上 ,

∴ S△COE = S△AOF  = 4  。                

∴ S△COE + S梯形CEFA = S△COA + S△AOF .

∴ S△COA = S梯形CEFA  .                 

∵ S梯形CEFA = ×(2+8)×3 = 15 ,   

∴ S△COA = 15 .            

(3)∵ 反比例函数图象是关于原点O的中心对称图形 ,

OP=OQ,OA=OB .

∴ 四边形APBQ是平行四边形 .

∴ S△POA =  S平行四边形APBQ =  ×24 = 6  .

设点P的横坐标为( > 0且),

P ( ,  ) .

过点PA分别做轴的垂线,垂足为E、F

∵ 点P、A在双曲线上,∴S△POE = S△AOF  = 4 .

若0<<4,如图12-3,

∵ S△POE + S梯形PEFA = SPOA + S△AOF,

∴ S梯形PEFA = S△POA = 6 .

.

解得= 2,= - 8(舍去) .

P(2,4).           

> 4,如图12-4,

∵ S△AOF+ S梯形AFEP = S△AOP + S△POE,

∴ S梯形PEFA = S△POA = 6 .

 ∴

解得 = 8, = - 2 (舍去) .

P(8,1).

∴ 点P的坐标是P(2,4)或P(8,1).

3、(福建龙岩)如图,抛物线经过的三个顶点,已知轴,点轴上,点轴上,且

(1)求抛物线的对称轴;

(2)写出三点的坐标并求抛物线的解析式;

(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形.若存在,求出所有符合条件的点坐标;不存在,请说明理由.

解:(1)抛物线的对称轴………2分

(2)    …………5分

把点坐标代入中,解得………6分

…………………………………………7分

(3)存在符合条件的点共有3个.以下分三类情形探索.

设抛物线对称轴与轴交于,与交于

过点轴于,易得

①   以为腰且顶角为角有1个:

······································································ 8分

中,

································································································· 9分

②以为腰且顶角为角有1个:

中,···· 10分

····························································································· 11分

③以为底,顶角为角有1个,即

的垂直平分线交抛物线对称轴于,此时平分线必过等腰的顶点

过点垂直轴,垂足为,显然

   于是······························································ 13分

······································································································· 14分

注:第(3)小题中,只写出点的坐标,无任何说明者不得分.

 0  45885  45893  45899  45903  45909  45911  45915  45921  45923  45929  45935  45939  45941  45945  45951  45953  45959  45963  45965  45969  45971  45975  45977  45979  45980  45981  45983  45984  45985  45987  45989  45993  45995  45999  46001  46005  46011  46013  46019  46023  46025  46029  46035  46041  46043  46049  46053  46055  46061  46065  46071  46079  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网