0  1149  1157  1163  1167  1173  1175  1179  1185  1187  1193  1199  1203  1205  1209  1215  1217  1223  1227  1229  1233  1235  1239  1241  1243  1244  1245  1247  1248  1249  1251  1253  1257  1259  1263  1265  1269  1275  1277  1283  1287  1289  1293  1299  1305  1307  1313  1317  1319  1325  1329  1335  1343  3002 

 

1.  圆内接四边形ABCD,现有一圆其圆心在边AB上并于其他三边相切,求证AD + BC = AB.

2. 设 k<n 时互素的两个正整数。将集合M = {1, 2, 3, ... , n-1} 中的每个数都染成蓝色或白色,保证 i和n-i的颜色相同,对于不等于k的i其颜色又与|i-k|的颜色相同。求证:M中所有数的颜色都相同。

3.  P(x) = a0 + a1x + ... + akxk 是整系数多项式,设其中系数为奇数的个数为o(P)。对于i = 0, 1, 2, ... ,记 Qi(x) = (1 + x)i。求证如果i1, i2, ... , in都是整数并满足0 <= i1 < i2 < ... < in,则有

o(Qi1 + Qi2 + ... + Qin) >= o(Qi1).

4.  集合M由 1985个不同的正整数组成,且每个数都有一个大于23的素因子,求证M中存在4个元素的积是某个整数的4次方。

5.  圆心为O的一个圆经过三角形ABC的顶点A和C,并与AB,BC分别交于不同的两点K、N,三角形ABC的外接圆和三角形KBN的外接圆相交于两个不同的点B、M,求证角OMB是直角。

6.  对于任何一个实数 x1,可通过递推式

xn+1 = xn(xn + 1/n)

 构造序列 x1, x2, ...,求证存在唯一的一个x1 满足对所有的n都有 0 < xn < xn+1 < 1 成立。

 

试题详情

 

1.  求证 0 <= yz + zx + xy - 2xyz <= 7/27, 其中x, y, z 是非负实数并满足x + y + z = 1.

2.  试找出所有的正整数对(a,b)满足 ab(a+b)不能被 7 整除, 但 (a+b)7 - a7 - b7 可被77整除。

3.  给定平面上的点O、A。平面上的每个点都被染色成有限种颜色中的一个。设X是平面上一给定点,以O为圆心的圆C(X)的半径是 OX + (∠ AOX)/OX,其中角∠ AOX是用弧度衡量(即范围是[0, 2л)),求证能够找到不在OA上的一点X使得它的颜色出现在圆C(X)的圆周上。

4.  凸四边形ABCD的边CD与以AB为直径的圆相切,求证:AB与以CD为直径的圆相且当且仅当BC和AD是平行的。

5.  设 d 是平面上一凸 n 边形(n>3)的所有对角线的长度之和,p 是它的周长。求证:

 n - 3 < 2d/p < [n/2] [(n+1)/2] - 2,

其中[x]表示不超过x的最大整数。

6. 0 < a < b < c < d 是四个奇数且 ad = bc. 若a + d = 2k 及 b + c = 2m 对某k、m成立,则

a = 1.

 

试题详情

 

1.  试找出所有定义在正实数并取值正实数的函数 f,使其满足 f(x(f(y)) = yf(x)对所有x, y成立,并且当 x 趋向于无穷大时 f(x) 趋向于0.

2.  圆C1、C2 的圆心分别是O1 、O2它们相交于两个不同的点,设A是其中一个交点。这两个圆的一条公切线切C1、 C2 分别于点 P1P2,另外一条公切线分别切C1、 C2 于点 Q1Q2,再设M1、M2分别是P1Q1和P2Q2的中点,求证:角O1AO2 = 角 M1AM2

3.  a , b, c是正整数,并且它们中的任何两个都没有大于1的公约数。求证 2abc - ab - bc - ca 是不能表示成形式xbc + yca + zab的最大整数,其中x, y, z是非负整数。

4.  等边三角形ABC,设集合E是该三角形的所有边界点(即边AB,BC,CA),任意将E分拆成两个不相交的子集合(它们的并集是E),试证明这两个集合中的至少一个包含有三点构成一直角三角形。

5.  问是否可能存在小于或等于105的1983个不同的正整数,任何三个都不构成一等茶数列。

6. 设a,b,c是一个三角形的三边长,求证

a2b(a - b) + b2c(b - c) + c2a(c - a) >= 0.

并判断何时等号成立。

 

试题详情

 

1.  f(n)是定义在正整数上且取值为非负整数的函数,f(2) = 0, f(3) > 0, f(9999) = 3333,并对所有m,n有f(m+n) - f(m) - f(n) = 0 或 1。试求出f(1982)。

2.  A1A2A3是不等腰三角形,其三边为a1, a2, a3 ,其中ai 是角 Ai的对边, 设 Mi 是边 ai 的中点,Ti是三角形的内切圆在边 ai上的切点,记Si为点 Ti 关于内角Ai的角平分线的对称点,求证线M1S1, M2S2 和M3S3共点。

3.  考虑无限正实数序列 {xn} 满足x0 = 1 及 x0 >= x1 >= x2 >= ... ,

x02/x1 + x12/x2 + ... + xn-12/xn >= 3.999.

b.    试寻找一个这样的序列使其满足

 x02/x1 + x12/x2 + ... + xn-12/xn < 4   对所有n成立。

4.  n使正整数,求证如果方程 x3 - 3xy2 + y3 = n有关于整数x,y的一个解,则其至少有三个解;当n=2891时再证明这个方程无整数解。

5.  正六边形ABCDEF的对角线AC、CE上分别有分点M、N并且 AM/AC = CN/CE = r,如果B、M、N共线,试求r的值。

6.  设S是边长为100的正方形,L是在S内部不自交的系列线段A0A1, A1A2, A2A3, ... , An-1An 并且A0 与 An不重合。已知对于每一个在S边界上的点P,L中存在一个点与P之间的距离不大于1/2。求证:L中存在两点X、Y,X与Y的距离不大于1,并且L上位于X和Y之间的部分不少于198。

 

试题详情

 

1.  P是三角形ABC内部一点,D、E、F分别是从P点向边BC、CA、AB所引垂线的垂足。试找出 BC/PD + CA/PE + AB/PF 式达到最小值的所有P点。

2.  取r满足1 <= r <= n,并考虑集合{1, 2, ... , n}的所有r元子集,每个子集都有一个最小元素。设F(n,r)是所有这些最小元素的算术平均值。求证:F(n,r) = (n+1)/(r+1)。

3.  设m、n是属于{1, 2, ... , 1981}的整数并且满足(n2 - mn - m2)2 = 1。试计算m2 + n2的最大值。

4. 设 n>2,问

5. 三个都通过点O的等半径的圆位于一个给定三角形的内部,并且每个圆都相切于这个三角形的两条边。求证:这个三角形的内心、外心、O点三点共线。

6. 函数f(x,y),对于任何非负整数x,y都满足f(0,y) = y + 1, f(x+1,0) = f(x,1), f(x+1,y+1) = f(x,f(x+1,y))。试计算f(4, 1981)的值。

 

试题详情

 

1. m,n是满足下述条件的正整数:

m/n = 1 - 1/2 + 1/3 - 1/4 + ... - 1/1318 + 1/1319.

求证:m可被1979整除。

2.  一个棱柱的上底和下底分别是正五边形A1A2A3A4A5B1B2B3B4B5 。这两个正五边形的每条边以及每个 AiBj边都被染上红色或蓝色。又已知每个边都被着色的三角形(其顶点即这个棱柱的顶点)必有两边着不同色,求证:上、下底的十条边都被染上了同一种颜色。

3.  平面上的两个圆相交,A是其中一个交点。现有两质点同时从A出发各自以恒定的速度,同以顺时针方向或同以逆时针方向绕各自的圆移动,在绕过一周之后这两点又同时回到了A点。求证:在这个平面上一定存在某个固定的点P使得在任意时刻P点都与这两动点的距离相等。

4. 给定一平面k,在这个平面上有一点P,平面外有一点Q,试找出平面k上的所有的点R使得(QP + PR)/QR 为最大值。

5.  试求出所有的实数a,使得存在非负实数x1, x2, x3, x4, x5满足下列关系式:

x1 + 2x2 + 3x3 + 4x4 + 5x5 = a;

x1 + 23x2 + 33x3 + 43x4 + 53x5 = a2

x1 + 25x2 + 35x3 + 45x4 + 55x5 = a3

6.  令A、E是一个正八边形的两相对顶点,一只青蛙从A点开始跳动,除了E点外,从八边形中的其他每一个顶点都可以跳至与它相邻两顶点中的任何一个。当它跳到E点时就停止运动。设 an 为恰好经过 n步跳动以后到达E点的所有可能线路的个数,求证:

      a2n-1 = 0
      a2n = (2 + √2)n-1/√2 - (2 - √2)n-1/√2。

 

试题详情

 

1.  m、n都是正整数且n>m。如果1978m 和1978n的十进制表示法的末三位数字相同,试求满足此条件并使m+n达到最小的m与n。

2.  P是某已知球内部一点,A、B、C是球面上三点,且有PA、PB、PC相互垂直,由PA、PB、PC决定的平行六面体与P点对角相向的顶点为Q,试求出Q点的轨迹。

3.  两不交集合{f(1), f(2), f(3), ... }和{g(1), g(2), g(3), ... }的并集是全部的正整数,其中f(1) < f(2) < f(3) < ...,g(1) < g(2) < g(3) < ... ,且有g(n) = f(f(n)) + 1对所有n=1,2,3, ...成立。试计算f(240)。

4.  等腰三角形ABC,AB = AC。在三角形ABC的外接圆的内部有一与其相切的一个小圆,该小圆又分别与AB、AC相切于P、Q两点。求证:线段PQ的中点恰为三角形ABC内切圆的圆心。

5. 令{ak} 为互不相同的正整数数列,求证对于所有的正整数n,有

∑ak/k2 >= ∑1/k;

上式中两边的求和都是k从1到n。

6. 某国际组织共有来自六个国家的共1978名会员,会员编号分别是1,2,...,1978。求证至少有某一会员的编号,恰为与他同国家的另外两位会员编号的和,或者是他同国家的两外一名会员编号的两倍。

 

试题详情

1.  求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。

2.  设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解: 

(a) A=√2;(b)A=1;(c)A=2。

3. a、b、c都是实数,已知 cos x的二次方程

a cos2x + b cos x + c = 0,

试用a,b,c作出一个关于 cos 2x的二次方程,使它的根与原来的方程一样。当a=4,b=2,c=-1时比较 cos x和cos 2x的方程式。

4.  试作一直角三角形使其斜边为已知的 c,斜边上的中线是两直角边的几何平均值。

5.  在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,

    (a.) 求证 AF、BC相交于N点;

   (b.) 求证 不论点M如何选取 直线MN 都通过一定点 S;

    (c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。

6.  两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。

 

试题详情

1.  在正方形ABCD中作等边三角形ABK、BCL、CDM、DAN,证明线段KL、LM、MN、NK的四个中点以及线段AK、BK、BL、CL、CM、DM、DN、AN的八个中点构成一个正十二边形的定点。

2. 在一个有限项的实数序列中,任意的相连七项之和为负,任意的相连十一项之和为正。求出这种序列最多有几项。

3.  n>2是一给定整数,Vn 是所有1+kn形式的整数构成的集合,其中k是正整数,对于Vn 中的一个数m,如果不存在Vn 中的两个数p、q使得m=pq,则称m是不可分解的。求证:Vn 中存在一数r,它可有多于一种的方式表示为Vn 中不可分解数的乘积。(乘积中若仅仅是因数的顺序不同则视为是同一种分解。)

4. 定义f(x) = 1 - a cos x - b sin x - A cos 2x - B sin 2x,其中a,b,A,B都是实数常量。如果f(x)>=0对所有实数x都成立,求证

a2 + b2 <= 2 且 A2 + B2 <= 1.

5.  a,b是正整数,设a2 + b2除以a + b得到商为q,余数是r。试求出所有的正整数对(a,b)使得q2 + r = 1977。

6.  f是定义在所有正整数上且取值也是正整数的函数,求证如果f(n+1) > f(f(n))对所有正整数n都成立,则f(n) = n对每个n都成立。

 

试题详情

1.  平面上一凸四边形的面积是32,两对边与一对角线之和为16,求另外一个对角线的所有可能的长度。

2. 令P1(x) = x2 - 2, Pi+1 = P1(Pi(x)), i = 1, 2, 3, ...,求证对任何一个正整数n,方程式Pn(x) = x 的所有根都是互不相同的实数。

3. 一个长方形的箱子可以用单位正方体完全装满,如果用体积为2的正方体来尽量装填,使得每个边都与箱子的边平行,则恰能装满箱子的40%,求所有这种箱子的可能尺寸(长、宽、高)。

4.  试将1976分解成一些正整数之和,求这些正整数乘积的最大值,并加以证明。

5.  n是一个正整数,m = 2n, aij = 0、1或-1 (1 <= i <= n, 1 <= j <= m)。还有m个未知数x1, x2, ... , xm满足下面n个方程:

ai1x1 + ai2x2 + ... + aimxm = 0,

其中i = 1, 2, ... , n。求证这n个方程有一组不全为0的整数解(x1, x2, ... , xm)使得|xi|<= m。

6.  一个序列u0, u1, u2, ... 定义为:

u0= 2, u1 = 5/2, un+1 = un(un-12 - 2) - u1,n = 1, 2, ...

求证

[un] = 2(2n - (-1)n)/3,

其中[x]表示不大于x的最大整数。

 

试题详情