22.(本小题满分14分)(2010·长郡模拟)已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(1)当a=-时,讨论函数f(x)的单调性;
(2)若函数f(x)仅在x=0时处有极值,求a的取值范围;
(3)若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,求b的取值范围.
解:(1)f′(x)=4x3+3ax2+4x=x(4x2+3ax+4).
当a=-时,f′(x)=x(4x2-10x-4)
=2x(2x-1)(x-2).
令f′(x)=0,解得x1=0,x2=,x2=2.
当x变化时,f′(x),f(x)的变化情况如下表:
|
x |
(-∞,0) |
0 |
|
|
|
2 |
(2,+∞) |
|
f′(x) |
- |
0 |
+ |
0 |
- |
0 |
+ |
|
f(x) |
↘ |
极小值 |
↗ |
极大值 |
↘ |
极小值 |
↗ |
所以f(x)在(0,),(2,+∞)内是增函数,在(-∞,0),(,2)内是减函数.
(2)f′(x)=x(4x3+3ax+4),显然x=0不是方程4x3+3ax+4=0的根.
为使f(x)仅在x=0处有极值,必须4x2+3ax+4≥0,即有Δ=9a2-64≤0.
解此不等式,得-≤a≤.这时,f(0)=b是唯一极值.
因此满足条件的a的取值范围是[-,].
(3)由条件a∈[-2,2],可知Δ=9a2-64<0,从而4x2+3ax+4>0恒成立.
当x<0时,f′(x)<0;当x>0时,f′(x)>0.
因此函数f(x)在[-1,1]上的最大值是f(1)与f(-1)两者中的较大者.
为使对任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,当且仅当![]()
即
在a∈[-2,2]上恒成立.![]()
所以b≤-4,因此满足条件的b的取值范围是(-∞,-4].