18.(本小题满分14分)
如图6,已知正方体的棱长为2,点E是正方形的中心,点F、G分别是棱的中点.设点分别是点E、G在平面内的正投影.
(1)求以E为顶点,以四边形在平面内的正投影为底面边界的棱锥的体积;
(2)证明:直线;
(3)求异面直线所成角的正统值
17.(本小题满分12分)
根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
对某城市一年(365天)的空气质量进行监测,获得API数据按照区间进行分组,得到频率分布直方图如图5
(1)求直方图中的值;
(2)计算一年屮空气质量分别为良和轻微污染的天数;
(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.
(结果用分数表示.已知
)
数学〈理科)试题B 第3页(共4页)
16.(本小题满分12分)
已知向量互相垂直,其中.
(1)求的值;
(2)若,求的值.
(二)选做题(13 ~ 15题,考生只能从中选做两题)
13.(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则 .
14.(不等式选讲选做题)不等式的实数解为 .
15.(几何证明选讲选做题)如图4,点是圆上的点, 且,则圆的面积等于 .
(一)必做题(9-12题)
9.随机抽取某产品件,测得其长度分别为,则图3所示的程序框图输出的 ,表示的样本的数字特征是 .(注:框图中的赋值符号“=”也可以写成“←”“:=”)
10.若平面向量满足,平行于轴,,则 .
11.巳知椭圆的中心在坐标原点,长轴在轴上,离心率为,且上一点到的两个焦点的距离之和为12,则椭圆的方程为 .
数学(理科)试题B 第2页(共4页)
12.已知离散型随机变量的分布列如右表.若,,则 , .
8.已知甲、乙两车由同一起点同时出发,并沿同一路线〈假定为直线)行驶.甲车、乙车的速度曲线分别为(如图2所示).那么对于图中给定的,下列判断中一定正确的是
A.在时刻,甲车在乙车前面
B.时刻后,甲车在乙车后面
C.在时刻,两车的位置相同
D.时刻后,乙车在甲车前面
7.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有
A.36种 B.12种 C.18种 D.48种
6.一质点受到平面上的三个力(单位:牛顿)的作用而处于平衡状态.已知成角,且的大小分别为2和4,则的大小为
A.6 B.2 C. D.
5.给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是
A.①和② B.②和③ C..③和④ D.②和④
4.巳知等比数列满足,且,则当时,
A. B. C. D.
数学(理科)试题8第1页(共4页)