20、(本题12分)是定义在上且满足如下条件的函数组成的集合:①对任意的,都有;②存在常数,使得对任意的,都有.
(I)设 ,证明:
(II)设,如果存在,使得,那么这样的是唯一的;
(III) 设,任取,令,,证明:给定正整数,对任意的正整数,成立不等式
2006年高考广东卷(B)
第一部分 选择题(50分)
19、(本题14分)已知公比为的无穷等比数列各项的和为9,无穷等比数列各项的和为.
(I)求数列的首项和公比;
(II)对给定的,设是首项为,公差为的等差数列,求的前10项之和;
(III)设为数列的第项,,求,并求正整数,使得存在且不等于零.
(注:无穷等比数列各项的和即当时该无穷等比数列前项和的极限)
18、(本题14分)设函数分别在处取得极小值、极大值.平面上点的坐标分别为、,该平面上动点满足,点是点关于直线的对称点.求
(I)求点的坐标;
(II)求动点的轨迹方程.
16、(本题12分)某运动员射击一次所得环数的分布如下:
7
8
9
10
0
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为.
(I)求该运动员两次都命中7环的概率
(II)求的分布列
(III) 求的数学期望.
(I)求二面角的大小;
(II)求直线与所成的角.
15、(本题14分)已知函数.
(I)求的最小正周期;
(II)求的的最大值和最小值;
(III)若,求的值.
14、在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第堆第层就放一个乒乓球,以表示第堆的乒乓球总数,则;(答案用表示).
三解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.
13、在的展开式中,的系数为________.
12、棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______.
11、________.
10、对于任意的两个实数对和,规定:,
当且仅当;运算“”为:
;运算“”为:,设,若,则
A. B. C. D.
第二部分 非选择题(共100分)