与 

是互素的合数.(这里分别表示有限数集的所有元素之和及元素个数.)

证 我们用表示有限数集X中元素的算术平均.

第一步,我们证明,正整数的n元集合具有下述性质:对的任意两个不同的非空子集AB,有

证明:对任意,设正整数k满足

            ,             ①

并设l是使的最小正整数.我们首先证明必有

  事实上,设A中最大的数,则由,易知A中至多有个元素,即,故.又由的定义知,故由①知.特别地有

此外,显然,故由l的定义可知.于是我们有

,则;否则有,则

    

由于A中最大元,故上式表明.结合即知

现在,若有的两个不同的非空子集AB,使得,则由上述证明知,故,但这等式两边分别是AB的元素和,利用易知必须A=B,矛盾.

第二步,设K是一个固定的正整数,,我们证明,对任何正整数x,正整数的n元集合具有下述性质:对的任意两个不同的非空子集AB,数是两个互素的整数.

事实上,由的定义易知,有的两个子集,满足,且

      .       ②

显然都是整数,故由上式知都是正整数.

现在设正整数d的一个公约数,则d的倍数,故由②可知,但由K的选取及的构作可知,是小于K的非零整数,故它是的约数,从而.再结合及②可知d=1,故互素.

第三步,我们证明,可选择正整数x,使得中的数都是合数.由于素数有无穷多个,故可选择n个互不相同且均大于K的素数.将中元素记为,则,且(对),故由中国剩余定理可知,同余方程组

有正整数解.

   任取这样一个解x,则相应的集合中每一项显然都是合数.结合第二步的结果,这一n元集合满足问题的全部要求.

解 当为奇数时,存在合乎要求的染法;当为偶数时,不存在所述的染法。

每3个顶点形成一个三角形,三角形的个数为个,而颜色的三三搭配也刚好有种,所以本题相当于要求不同的三角形对应于不同的颜色组合,即形成一一对应.

我们将多边形的边与对角线都称为线段.对于每一种颜色,其余的颜色形成种搭配,所以每种颜色的线段(边或对角线)都应出现在个三角形中,这表明在合乎要求的染法中,各种颜色的线段条数相等.所以每种颜色的线段都应当有条.

为偶数时,不是整数,所以不可能存在合乎条件的染法.下设为奇数,我们来给出一种染法,并证明它满足题中条件.自某个顶点开始,按顺时针方向将凸边形的各个顶点依次记为.对于,按理解顶点.再将种颜色分别记为颜色

将边染为颜色,其中.再对每个,都将线段(对角线)染为颜色,其中.于是每种颜色的线段都刚好有条.注意,在我们的染色方法之下,线段同色,当且仅当

.         ①

因此,对任何,任何,线段都不与同色.换言之,如果

.         ②

则线段都不与同色.

任取两个三角形,如果它们之间至多只有一条边同色,当然它们不对应相同的颜色组合.如果它们之间有两条边分别同色,我们来证明第3条边必不同颜色.为确定起见,不妨设同色.

情形1:如果也同色,则由①知

, 

, 

将二式相减,得,故由②知不与同色.

情形2:如果也同色,则亦由①知

, 

, 

将二式相减,亦得,亦由②知不同色.总之,对应不同的颜色组合. 

17.(2007·江苏地理)下图为“1271-1295年马可·波罗东行路线示意图”。图回答下列问题。(18分)

(1)马可·波罗从威尼斯出发,东行途中经过A、B、C三地,其所属的气候类型分别是A           

B         ,C             。其中A地的气候特征是                

(2)马可·波罗乘船返回途中,途经的D处为         海峡,E处位于             

块和             板块的交界处附近。

(3)途经的F处比E处的海水盐度        (高、低),形成这种差异的主要原因是         

(4)本题为选做题,只可从A、B两题中选做一题。

A题.马可·波罗途经塔里木盆地西部边缘的喀什时,得知当地“有美丽的花园、果园、葡萄园,棉花、亚麻产量

十分丰富”。请简要分析当地棉花种植的有利自然条件。

B题.马可·波罗往返途中都经过西亚地区。请简要分析当今西亚地理位置的重要性。

答案  (1)地中海气候  温带大陆性气候  温带季风气候

夏季炎热干燥 ,冬季温和湿润

(2)马六甲  亚欧  印度洋

(3)高  F处降水较少,蒸发旺盛

(4)A题.光照条件好;热量充足;灌溉便利;地势平坦。

B题.处于联系亚、欧、非三大洲,沟通大西洋和印度洋的枢纽地位;是世界石油运输的重要通道。

 0  442795  442803  442809  442813  442819  442821  442825  442831  442833  442839  442845  442849  442851  442855  442861  442863  442869  442873  442875  442879  442881  442885  442887  442889  442890  442891  442893  442894  442895  442897  442899  442903  442905  442909  442911  442915  442921  442923  442929  442933  442935  442939  442945  442951  442953  442959  442963  442965  442971  442975  442981  442989  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网