2、本题还可用线性规划知识求解。

例2、  设a>0,b>0,求证:

解题思路分析:

法一:比差法,当不等式是代数不等式时,常用比差法,比差法的三步骤即为函数单调性证明的步骤。

左-右=

   ≥0

∴ 左≥右

法二:基本不等式

根据不等号的方向应自左向右进行缩小,为了出现右边的整式形式,用配方的技巧。

 

∴ 两式相加得:

例3、  设实数x,y满足y+x2=0,0<a<1,求证:

解题思路分析:

,0<a<1

说明:本题在放缩过程中,利用了函数的单调性,函数知识与不等式是紧密相连的。

例4、已知a,b为正常数,x,y为正实数,且,求x+y的最小值。

解题思路分析:

法一:直接利用基本不等式:当且仅当,即时等号成立

说明:为了使得等号成立,本题利用了“1”的逆代换。

法二:消元为一元函数

途径一:由

∵ x>0,y>0,a>0

∴ 由>0得y-b>0

∴ x+y≥

当且仅当,即时,等号成立

途径二:令∈(0,)

∴ x+y=

当且仅当时,等号成立

说明:本题从代数消元或三角换元两种途径起到了消元作用。

例5、已知f(x)=-3x2+a(6-a)x+b

(1)解关于a的不等式f(1)>0;

(2)当不等式f(x)>0的解集为(-1,3)时,求实数a,b的值。

解题思路分析:

(1)f(1)=-3+a(6-a)+b=-a2+6a+b-3

 ∵ f(1)>0

 ∴ a2-6a+3-b<0

△=24+4b

当b≤-6时,△≤0

∴ f(1)>0的解集为φ;

当b>-6时,

∴ f(1)>0的解集为

  (2)∵ 不等式-3x2+a(6-a)x+b>0的解集为(-1,3)

∴ f(x)>0与不等式(x+1)(x-3)<0同解

∵ 3x2-a(6-a)x-b<0解集为(-1,3)

解之得

例6、设a,b∈R,关于x方程x2+ax+b=0的实根为α,β,若|a|+|b|<1,求证:

|α|<1,|β|<1。

解题思路分析:

在不等式、方程、函数的综合题中,通常以函数为中心。

法一:令f(x)=x2+ax+b

则 f(1)=1+a+b>1-(|a|+|b|)>1-1=0

  f(-1)=1-a+b>1-(|a|+|b|)>0

又∵ 0<|a|≤|a|+|b|<1

∴ -1<a<1

∴ f(x)=0的两根在(-1,1)内,即|α|<1,|β|<1

法二:∵α+β=-a,αβ=b

∴ |α+β|+|αβ|=|α|+|β|<1

∴ |α|-|β|+|α||β|<|α+β|+|αβ|<1

∴(|α|-1)(|β|+1)<0

∵ |β|+1>0

∴ |α|<1

同理:|β|<1

说明:对绝对值不等式的处理技巧是适度放缩,如|a|-|b|≤|a+b|及|b|-|a|≤|a±b|的选择等。

例7、某人乘坐出租车从A地到乙地,有两种方案:第一种方案,乘起步价为10元,每km价1.2元的出租车;第二种方案,乘起步价为8元,每km价1.4元的出租车,按出租车管理条例,在起步价内,不同型号的出租车行驶的里路是相等的,则此人从A地到B地选择哪一种方案比较适合?

解题思路分析:

设A地到B地距离为mkm,起步价内行驶的路为akm

显然,当m≤a时,选起步价为8元的出租车比较合适

当m>a时,设m=a+x(x>0),乘坐起步价为10元的出租车费用为P(x)元,乘坐起步价为8元的出租车费用为Q(x)元,则P(x)=10+1.2x,Q(x)=8+1.4x

∵ P(x)-Q(x)=2-0.2x=0.2(10-x)

∴ 当x>0时,P(x)<Q(x),此时起步价为10元的出租车比较合适

当x<10时,P(x)>Q(x),此时选起步价为8元的出租车比较合适

当x=10时,此时两种出租车任选

 0  50942  50950  50956  50960  50966  50968  50972  50978  50980  50986  50992  50996  50998  51002  51008  51010  51016  51020  51022  51026  51028  51032  51034  51036  51037  51038  51040  51041  51042  51044  51046  51050  51052  51056  51058  51062  51068  51070  51076  51080  51082  51086  51092  51098  51100  51106  51110  51112  51118  51122  51128  51136  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网