20.A、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是
B队队员是
按以往多次比赛的统计,对阵队员之间胜负概率如下:
现按表中对阵方式出场,每场胜队得1分,负队得0分.设A队、B队最后所得总分分别为ξ、η.
|
对阵队员 |
A队队员胜的概率 |
A队队员负的概率 |
|
|
|
|
|
|
|
|
|
|
|
|
(Ⅰ)求ξ,η的概率分布;
(Ⅱ)求Eξ,Eη.
[命题意图] 本题主要考查离散型随机变量分布列和数学期望等概念与计算,以及运用概率知识认识和讨论实际问题的能力.
该题的取材贴近考生日常生活,以广大考生都熟悉的乒乓球比赛为素材,用列表的方式,给出对阵队员间胜负的概率,并规定每场胜负的得分规则.这样的条件下,赛后球队所得总分是离散型随机变量.本题要求考生计算该随机变量的分布列和数学期望.
这样设计试题,应用性强,也能贴近考生实际,符合《考试说明》的要求.
[解题思路] 为了求随机变量ξ和η的概率分布,必须先确定它们是离散型还是连续型.依题意,它们都是离散型随机变量,且满足ξ+η=3.所以只须求出ξ(或η)的概率分布,便可立即写出η(或ξ)的概率分布.
为了求ξ的概率分布,首先应弄清ξ可能取哪些值?这些值表示怎样的随机事件?进而应用随机事件概率计算公式(如乘法公式、加法公式等),求出ξ取每一个可能值的概率,使得到所要求的概率分布列.
至于第(Ⅱ)问,可直接应用离散型随机变量数学期望的计算公式求解.
因为ξ是A队赛后所得的总分,根据题意,ξ只可能取0,1,2,3等4个值,其表示的随机事件分别为:
ξ=表示A队3场比赛都输球,全负;
ξ=1表示A队3场比赛中1胜2负;
ξ=2表示A队3场比赛中2胜1负;
ξ=3表示A队3场比赛全胜.
所以由给出的胜负概率表,应用互斥事件概率的加法公式、独立事件的概率加法公式等相关公式,便可求得ξ的分布列.
(Ⅰ)解 ξ、η的可能取值都为3,2,1,0.ξ的分布为:
![]()
依题意,ξ+η=3,故η的分布为:
![]()
![]()
![]()
![]()
![]()