21.已知常数a>0,向量c=(0,a),i=(1,0).经过原点O以c+λi为方向向量的直线与经过定点A(0,a)以i-2λc方向向量的直线相交于点P,其中λ∈R.试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.

[命题意图]  本题主要考查平面向量的概念和向量的线性运算,根据已知条件求动点的轨迹方程,并讨论轨迹曲线的性质,着重考查直线、圆和椭圆等平面解析几何的基础知识,以及综合应用所学知识分析和解决问题的能力.

试题用向量的形式给出两条相交直线的条件,围绕交点P提出个一个探索性的问题:讨论是否存在两个定点,使得点P到这两个定点距离之和为一定值.在这里,点P因实数λ的变化而动.考生在审题时,必须自觉理解到问题的这个特点,具备“运动变化”和“动中求静”的辩证法的思想和观点,只有这样才能有效破题,获得问题的解答.可见试题重在考查思维和分析的能力.同时,该题的设计,围绕平面解析几何的主体知识,将传统的坐标法与向量法有机结合起来,旨在考查综合应用能力.

[解题思路]  有关存在性问题的讨论,许多时候可用构造法,这是一种基本的,而且也是比较原始的方法.就本题而言,即假设符合要求的定点存在,依题意列写出定点坐标所满足的方程,进而探求方程的解是否存在.依此思路,由于未知量比较多,方程的列写也难以简明,因而推演起来工作量大,而且繁杂.显然采用构造法绝非上策,宜另谋出路.

从试题的实际出发,联想广泛可用的知识,才能获得有效的求解思路和方法.题设的点P是两条动直线的交点,随着λ取遍实数集R中所有的值,点P的集合是一条轨迹曲线.另一方面,到两个定点距离之和为一定值的点之集合可能有两种情况:其一,当定值大于两个定点的距离时,该点集是椭圆曲线;其二,当定值等于两个定点的距离时,该点集是连结两点的线段.由于平面上到两个定点距离之和不可能小于两定点的距离,所以也就不可能出现第三种情况.由这样的思考,可得解题思路如下:

从求点P的轨迹方程入手,进而讨论轨迹曲线的性质,便可获得本题的答案.

由题设,可作图观察.图中,向量直线分别过点O和A,其方向向量分别为c+λi和i-2λc,点P是的交点.为了求点P的轨迹方程,可采用不同的方法.在这里,有一点值得注意的是:试题本身并没有要求考生求点P的轨迹方程,我们是借助轨迹的思想,只须求出点P的坐标所应满足的方程,进而展开讨论,而无须检验满足方程的每一个解为坐标的点都是符合题意的点P,也即无须要求所得方程的纯粹性,与严格意义上的求轨迹方程有所不同.

解法1  因为 c+λi=(0,a)+ λ(1,0)=(λ,a),

       i-2λc=(1,0)-2λ(0,a)=(1,-2λa),

所以  直线OP与AP的方程分别为

        λy=ax

        y-a=-2λax,

式中,a>0,λ∈R.

整理得

因为a>0,所以得:

(i)当时,方程①是圆方程,故不存在合乎题意的定点E和F;

(ii)当时,方程①表示椭圆,故焦点为合乎题意的两个定点;

(iii)时,方程①也表示椭圆,故焦点为合乎题意的两个定点.

解法2  依题设,有实数m和n满足

所以点P(x,y)的坐标为

整理得点P的坐标满足方程

以下的讨论同解法1.此处从略.

[命题意图]  本小题主要考查数列、等比数列的基础知识和数学归纳法,同时考查抽象推理等理性思维能力.

数学高考中较难的数列解答题,一般都是给出一个递推关系,通过它或者转化为等差、等比数列,或者通过由特殊到一般的猜想、归纳,或者通过顺次迭代,以求出其通项.而试题的难度则由给出的递推关系与初始值来调整.2002年的数列解答题给出相邻四项的数量关系,较为新颖,2003年定位于回归到考生较为熟悉的相邻两项的数量关系,基本递推关系为“”.理科试题改变以往给出初始值的做法,给出常数证明数列的一个通项公式。这种提问方式反映出新的考查角度,不让考生死套题型,有利于考查独立思考能力和理性思维能力,对文科考生则降低抽象思维的要求,递推关系简化为基本形式“”,并给出初始值a=1,使试题难度较为切合文科考生的实际.

[解题思路]  常规方法是通过递推关系的变形转化为等比数列,但过程较繁,用数学归纳法或迭代方法较顺畅.

(Ⅰ)证法1  (i)当n=1时,由已知等式成立;

(ii)假设当n=k(k≥)时等式成立,即

也就是说,当n=k+1时,等式也成立.

根据(i)和(ii),可知等式对任何正整数n成立.

证法4顺次迭代

(i)当n=2k-1,k=1,2,…时,①式即为

②式对k=1,2,…都成立,有

(ii)当n=2k,k=1,2,…时,①式即为

③式对k=1,2,…都成立,有

[以下同解法1]

解法3 

下面证明当

(i)当n=2k-1,k=1,2,…时,

(ii)n=2k,k=1,2…时,

20.A、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是B队队员是按以往多次比赛的统计,对阵队员之间胜负概率如下:

现按表中对阵方式出场,每场胜队得1分,负队得0分.设A队、B队最后所得总分分别为ξ、η.

对阵队员
A队队员胜的概率
A队队员负的概率









(Ⅰ)求ξ,η的概率分布;

(Ⅱ)求Eξ,Eη.

[命题意图]  本题主要考查离散型随机变量分布列和数学期望等概念与计算,以及运用概率知识认识和讨论实际问题的能力.

该题的取材贴近考生日常生活,以广大考生都熟悉的乒乓球比赛为素材,用列表的方式,给出对阵队员间胜负的概率,并规定每场胜负的得分规则.这样的条件下,赛后球队所得总分是离散型随机变量.本题要求考生计算该随机变量的分布列和数学期望.

这样设计试题,应用性强,也能贴近考生实际,符合《考试说明》的要求.

[解题思路]  为了求随机变量ξ和η的概率分布,必须先确定它们是离散型还是连续型.依题意,它们都是离散型随机变量,且满足ξ+η=3.所以只须求出ξ(或η)的概率分布,便可立即写出η(或ξ)的概率分布.

为了求ξ的概率分布,首先应弄清ξ可能取哪些值?这些值表示怎样的随机事件?进而应用随机事件概率计算公式(如乘法公式、加法公式等),求出ξ取每一个可能值的概率,使得到所要求的概率分布列.

至于第(Ⅱ)问,可直接应用离散型随机变量数学期望的计算公式求解.

因为ξ是A队赛后所得的总分,根据题意,ξ只可能取0,1,2,3等4个值,其表示的随机事件分别为:

ξ=表示A队3场比赛都输球,全负;

ξ=1表示A队3场比赛中1胜2负;

ξ=2表示A队3场比赛中2胜1负;

ξ=3表示A队3场比赛全胜.

所以由给出的胜负概率表,应用互斥事件概率的加法公式、独立事件的概率加法公式等相关公式,便可求得ξ的分布列.

(Ⅰ)解  ξ、η的可能取值都为3,2,1,0.ξ的分布为:

依题意,ξ+η=3,故η的分布为:

19.设a>0,求函数

[命题意图]  本题主要考查函数的求导,导数在研究函数性质中的应用和不等式的求解等基本知识,以及运算能力.

本题给出的函数比较简单,为幂函数与对数函数ln(x+a)之差,让考生求这个函数的单调区间.直接应用单调函数的定义,难以进行有效的讨论,宜借助求导的方法求解.以此可以考查函数求导的技能,以及讨论导数正负性的方法.

所设的函数含有参数a,讨论函数单调区间时,应顾及a值的影响.这样,也就考查了分类讨论的数学方法,强化了试题对能力的考查功能.

[解题思路]  可从求函数的导数入手,再讨论导数的正负性变化区间,便可确定函数的单调区间.由于所得导数含有x的根式和分式,在讨论导数正负性时,将遇到解含根式和分式的方程或不等式,须正确运用同解变换的思想方法和技能.

(i)当a>1时,方程①无解,即f′(x)=0无解,f′(x)在区间(0,+∞)上正负性不变,故由

知f′(x)>0在区间(0,+∞)上恒成立,所以(0,+∞)是f(x)的单调区间,f(x)在(0,+∞)上是增函数.

(ii)a=1时,方程①有惟一解x=1.

知当0<x<1时,恒有f′(x)>0;由f′

知当x>1时,恒有f′(x)>0.

所以,当a=1时,函数f(x)在区间(0,1)上是增函数,在区间(1,+∞)上也是增函数.又f(x)在x=1连续,所以(0,+∞)是f(x)的单调区间,f(x)在(0,+∞)上是增函数.

(iii)当0<a<1时,方程①有两个根:

这时,由于

可知:当0<x<

所以,当0<a<1时,都是单调区间,f(x)在这两个区间上都是增函数;也是单调区间,f(x)在这个区间上是减函数.

(i)当a>1时,2a-4>-2,由x>0知

(ii)当a=1时,

当且仅当x=1时取等号.即当0<x<1或x>1时,f′(x)>0,知f(x)在(0,1)或(1,+∞)内都单调递增.又f(x)在x=1处连续,因此,f(x)在(0,+∞)内单调递增.

因此,函数f(x)在区间内单调递增,在区间内也单调递增.

令f′(x)<0,即

因此,函数,f(x)在区间内单调递减.

18.如图,在直三棱柱底面是等腰直角三角形,∠ACB=90°.侧棱的中点,点E在平面ABD上的射影是△ABD的重心G.

(Ⅰ)求与平面ABD所成角的大小(结果用反三角函数值表示);

[命题意图]  本小题主要考查线面关系和直三棱柱等基础知识,同时考查空间想象能力和推理运算能力.

新课程的立体几何教材分为(A)、(B)两个版本,即传统的逻辑推理体系和向量运算方法.为了.适应不同地区的选用情况,前几年高考的立体几何试题是命制出(甲)、(乙)两道平行题目由考生选作.今年试验改变这种做法,原课程与新课程统一命制一道通用的试题,基本要求是用传统方法或向量方法,解题难度相当.于是,试题的知识载体定位于直棱柱.理科用直三棱柱,文科用正四棱柱.

理科试题中的图形实际上是半个正方体,它的原型是正方体的一个性质:“若点M是正方体的棱的中点,则正方体的中心O在截面AMC上的射影恰好是△AMC的重心”.试题基本上是采用其逆命题,且只给出半个正方体,把问题提为“正方体的一条对角线与截面所成的角”,隐蔽了上述性质,提高了对考生空间想像力和推理能力的要求,以期更好地考查考生的数学能力.

[解题思路]  本题(Ⅰ)的基本解法是先求出三棱柱的底面边长,可以在直三棱柱中求解,也可以补形成正四棱柱或直平行六面体求解,思维层次高者可以发现EB=DF避开计算,通过线段比求角的三角函数值.(Ⅱ)问的解法用等积法最为简便.运用向量方法则(Ⅰ)问较易,(Ⅱ)问较难,总体难度相当.

(Ⅰ)解法1  如图,连结BG,则BG是BE在面ABD的射影,即∠EBG是与平面ABD所成的角.

设F为AB中点,连结EF、FC,

因为D、E分别是的中点,又DC⊥平面ABC,

所以CDEF为矩形.

连结DF,G是△ADB的重心,故G∈DF.在直角三角形EFD中,

解法2  同解法1图.

所以  AB·DF·EG=AB·EF·DE,其中EF=1.

的中点P,连结PD,PA,PB,则ABDP是平行四边形,PB必过△ADB的重心.

解得x=2

解法4  如解法1图,由解法1知,CDEF是矩形,故DE=CF,而EF=FB,所以Rt△DEF≌△CFB,则DF=EB.

解法5  连结BG,则BG是BE在面ABD的射影,即与平面ABD所成的角.

如图所示建立坐标系,坐标原点为O.

设CA=2a,则A(2a,0,0),B(0,2a,0),D(0,0,1),,E(a,a,1),

(Ⅱ)解法1  因为ED⊥AB,ED⊥EF,又EF∩AB=F,

 

因为ED⊥AB,ED上⊥EF,又EF∩AB=F,

解法3  如(Ⅰ)问解法5中图,A(2,0,0),E(1,1,1),D(0,0,1).

 0  50028  50036  50042  50046  50052  50054  50058  50064  50066  50072  50078  50082  50084  50088  50094  50096  50102  50106  50108  50112  50114  50118  50120  50122  50123  50124  50126  50127  50128  50130  50132  50136  50138  50142  50144  50148  50154  50156  50162  50166  50168  50172  50178  50184  50186  50192  50196  50198  50204  50208  50214  50222  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网