37. 本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力.满分12分.
解:(Ⅰ)设P(x1,y1),Q(x2,y2),M(x0,y0),依题意x1≠0,y1>0,y2>0.
由y=
x2,
①
得y'=x.
∴过点P的切线的斜率k切= x1,
∴直线l的斜率kl=-
=-
,
∴直线l的方程为y-
x12=-
(x-x1),
方法一:
联立①②消去y,得x2+
x-x12-2=0.
∵M是PQ的中点
x0=
=-
,
∴
y0=
x12-
(x0-x1).
消去x1,得y0=x02+
+1(x0≠0),
∴PQ中点M的轨迹方程为y=x2+
+1(x≠0).
方法二:
由y1=
x12,y2=
x22,x0=
,
得y1-y2=
x12-
x22=
(x1+x2)(x1-x2)=x0(x1-x2),
则x0=
=kl=-
,
∴x1=-
,
将上式代入②并整理,得
y0=x02+
+1(x0≠0),
∴PQ中点M的轨迹方程为y=x2+
+1(x≠0).
(Ⅱ)设直线l:y=kx+b,依题意k≠0,b≠0,则T(0,b).
分别过P、Q作PP'⊥x轴,QQ'⊥y轴,垂足分别为P'、Q',则

.
y=
x2
由
消去x,得y2-2(k2+b)y+b2=0. ③
y=kx+b
y1+y2=2(k2+b),
则
y1y2=b2.
方法一:
∴
|b|(
)≥2|b|
=2|b|
=2.
∵y1、y2可取一切不相等的正数,
∴
的取值范围是(2,+
).
方法二:
∴
=|b|
=|b|
.
当b>0时,
=b
=
=
+2>2;
当b<0时,
=-b
=
.
又由方程③有两个相异实根,得△=4(k2+b)2-4b2=4k2(k2+2b)>0,
于是k2+2b>0,即k2>-2b.
所以
>
=2.
∵当b>0时,
可取一切正数,
∴
的取值范围是(2,+
).
方法三:
由P、Q、T三点共线得kTQ=KTP,
即
=
.
则x1y2-bx1=x2y1-bx2,即b(x2-x1)=(x2y1-x1y2).
于是b=
=-
x1x2.
≥2.