7、(2006江西)问题背景 某课外学习小组在一次学习研讨中,得到了如下两个命题:

①如图1,在正三角形△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60º,则BM=CN;

②如图2,在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90º,则BM=CN;

然后运用类比的思想提出了如下命题:

③如图3,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108º,则BM=CN。

任务要求:

(1)请你从①、②、③三个命题中选择一个进行证明;(说明:选①做对得4分,选②做对得3分,选③做对得5分)

(2)请你继续完成下列探索:

①请在图3中画出一条与CN相等的线段DH,使点H在正五边形的边上,且与CN相交所成的一个角是108º,这样的线段有几条?(不必写出画法,不要求证明)

②如图4,在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108º,请问结论BM=CN是否还成立?若成立,请给予证明;若不成立,请说明理由。

[解] (1)以下答案供参考:

    (1) 如选命题①

   证明:在图1中,∵∠BON=60°∴∠1+∠2=60°

∵∠3+∠2=60°,∴∠1=∠3

又∵BC=CA,∠BCM=∠CAN=60°∴ΔBCM≌ΔCAN

BM=CN  (2)如选命题②

证明:在图2中,∵∵∠BON=90°∴∠1+∠2=90°

∵∠3+∠2=90°,∴∠1=∠3

又∵BC=CD,∠BCM=∠CDN=90°∴ΔBCM≌ΔCDN

BM=CN 

(3)如选命题③

证明;在图3中,∵∠BON=108°∴∠1+∠2=108°

∵∠2+∠3=108°∴∠1=∠3        

又∵BC=CD,∠BCM=∠CDN=108°

∴ΔBCM≌ΔCDN  

BM=CN 

(2)①答:当∠BON=时结论BM=CN成立.

②答当∠BON=108°时。BM=CN还成立

  证明;如图5连结BDCE.

在△BCI)和△CDE

BC=CD, ∠BCD=∠CDE=108°,CD=DE

∴ΔBCD≌ ΔCDE

BD=CE , ∠BDC=∠CED, ∠DBC=∠CEN 

∵∠CDE=∠DEC=108°, ∴∠BDM=∠CEN 

∵∠OBC+∠ECD=108°, ∠OCB+∠OCD=108°

∴∠MBC=∠NCD

又∵∠DBC=∠ECD=36°, ∴∠DBM=∠ECN

∴ΔBDM≌ ΔCNE  ∴BM=CN

6、(2006山东潍坊)已知二次函数图象的顶点在原点,对称轴为轴.一次函数的图象与二次函数的图象交于两点(的左侧),且点坐标为.平行于轴的直线点.

(1)求一次函数与二次函数的解析式;

(2)判断以线段为直径的圆与直线的位置关系,并给出证明;

(3)把二次函数的图象向右平移个单位,再向下平移个单位,二次函数的图象与轴交于两点,一次函数图象交轴于点.当为何值时,过三点的圆的面积最小?最小面积是多少?

[解](1)把代入

一次函数的解析式为

二次函数图象的顶点在原点,对称轴为轴,

  设二次函数解析式为

·········································································· 把代入

二次函数解析式为

(2)由

解得

点分别作直线的垂线,垂足为

直角梯形的中位线长为

垂直于直线于点,则

 的长等于中点到直线的距离的2倍,

为直径的圆与直线相切.

(3)平移后二次函数解析式为

,得

  过三点的圆的圆心一定在直线上,点为定点,

·································· 要使圆面积最小,圆半径应等于点到直线的距离,

此时,半径为2,面积为

设圆心为中点为,连,则

在三角形中,

,而

  当时,过三点的圆面积最小,最小面积为

5、(2006浙江嘉兴)某旅游胜地欲开发一座景观山.从山的侧面进行堪测,迎面山坡线ABC由同一平面内的两段抛物线组成,其中AB所在的抛物线以A为顶点、开口向下,BC所在的抛物线以C为顶点、开口向上.以过山脚(点C)的水平线为x轴、过山顶(点A)的铅垂线为y轴建立平面直角坐标系如图(单位:百米).已知AB所在抛物线的解析式为BC所在抛物线的解析式为,且已知

(1)设是山坡线AB上任意一点,用y表示x,并求点B的坐标;

(2)从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上(见图).

①分别求出前三级台阶的长度(精确到厘米);

②这种台阶不能一直铺到山脚,为什么?

(3)在山坡上的700米高度(点D)处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E处,(米).假设索道DE可近似地看成一

段以E为顶点、开口向上的抛物线,解析式为.试求索道的最大悬空高度.

 

[解] (1)∵是山坡线AB上任意一点,

,∴=4,∴

(2)在山坡线AB上,

①令,得 ;令,得

∴第一级台阶的长度为(百米)(厘米)

同理,令,可得

∴第二级台阶的长度为(百米)(厘米)

第三级台阶的长度为(百米)(厘米)

②取点,又取,则

∴这种台阶不能从山顶一直铺到点B,从而就不能一直铺到山脚

(注:事实上这种台阶从山顶开始最多只能铺到700米高度,共500级.从100米高度到700米高度都不能铺设这种台阶.解题时取点具有开放性)

②另解:连接任意一段台阶的两端点PQ,如图

∵这种台阶的长度不小于它的高度

当其中有一级台阶的长大于它的高时, 

在题设图中,作H

,又第一级台阶的长大于它的高

∴这种台阶不能从山顶一直铺到点B,从而就不能一直铺到山脚

(3)

由图可知,只有当索道在BC上方时,索道的悬空高度才有可能取最大值

索道在BC上方时,悬空高度

时,

∴索道的最大悬空高度为米.

4、(2006山东烟台)如图,已知抛物线L1: y=x2-4的图像与x有交于A、C两点,

(1)若抛物线l2与l1关于x轴对称,求l2的解析式;

(2)若点B是抛物线l1上的一动点(B不与A、C重合),以AC为对角线,A、B、C三点为顶点的平行四边形的第四个顶点定为D,求证:点D在l2上;

(3)探索:当点B分别位于l1在x轴上、下两部分的图像上时,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由。

[解]

(1)设l2的解析式为y=a(x-h)2+k

∵l2与x轴的交点A(-2,0),C(2,0),顶点坐标是(0,-4),l1与l2关于x轴对称,

   ∴l2过A(-2,0),C(2,0),顶点坐标是(0,4)

   ∴y=ax2+4

   ∴0=4a+4  得 a=-1

  ∴l2的解析式为y=-x2+4

 (2)设B(x1 ,y1)

   ∵点B在l1

   ∴B(x1 ,x12-4)

   ∵四边形ABCD是平行四边形,A、C关于O对称

   ∴B、D关于O对称

   ∴D(-x1 ,-x12+4).

   将D(-x1 ,-x12+4)的坐标代入l2:y=-x2+4

      ∴左边=右边

      ∴点D在l2上.

 (3)设平行四边形ABCD的面积为S,则

   S=2*S△ABC =AC*|y1|=4|y1|

   a.当点B在x轴上方时,y1>0

    ∴S=4y1 ,它是关于y1的正比例函数且S随y1的增大而增大,

    ∴S既无最大值也无最小值

   b.当点B在x轴下方时,-4≤y1<0

    ∴S=-4y1 ,它是关于y1的正比例函数且S随y1的增大而减小,

    ∴当y1 =-4时,S由最大值16,但他没有最小值

    此时B(0,-4)在y轴上,它的对称点D也在y轴上.

    ∴AC⊥BD

    ∴平行四边形ABCD是菱形

    此时S最大=16.

2、(2006浙江金华)如图,平面直角坐标系中,直线AB轴,轴分别交于A(3,0),B(0,)两点, ,点C为线段AB上的一动点,过点CCD轴于点D.

(1)求直线AB的解析式;

(2)若S梯形OBCD,求点C的坐标;

(3)在第一象限内是否存在点P,使得以P,O,B为顶点的

三角形与△OBA相似.若存在,请求出所有符合条件

的点P的坐标;若不存在,请说明理由.

[解] (1)直线AB解析式为:y=x+. 

(2)方法一:设点C坐标为(x,x+),那么OD=x,CD=x+. 

由题意:,解得(舍去)

∴ C(2,)

方法二:∵ ,,∴

由OA=OB,得∠BAO=30°,AD=CD.

∴ CD×AD=.可得CD=

∴ AD=1,OD=2.∴C(2,).

(3)当∠OBP=Rt∠时,如图

    ①若△BOP∽△OBA,则∠BOP=∠BAO=30°,BP=OB=3,

(3,).

    ②若△BPO∽△OBA,则∠BPO=∠BAO=30°,OP=OB=1.

(1,).

当∠OPB=Rt∠时

③ 过点P作OP⊥BC于点P(如图),此时△PBO∽△OBA,∠BOP=∠BAO=30°

过点P作PM⊥OA于点M.

方法一: 在Rt△PBO中,BP=OB=,OP=BP=

∵ 在Rt△PMO中,∠OPM=30°,

∴ OM=OP=;PM=OM=.∴().

方法二:设P(x ,x+),得OM=x ,PM=x+

由∠BOP=∠BAO,得∠POM=∠ABO.

∵tan∠POM=== ,tan∠ABOC==

x+x,解得x=.此时,().

④若△POB∽△OBA(如图),则∠OBP=∠BAO=30°,∠POM=30°.  

    ∴ PM=OM=

∴ ()(由对称性也可得到点的坐标).

当∠OPB=Rt∠时,点P在x轴上,不符合要求.

综合得,符合条件的点有四个,分别是:

(3,),(1,),(),().

 0  44404  44412  44418  44422  44428  44430  44434  44440  44442  44448  44454  44458  44460  44464  44470  44472  44478  44482  44484  44488  44490  44494  44496  44498  44499  44500  44502  44503  44504  44506  44508  44512  44514  44518  44520  44524  44530  44532  44538  44542  44544  44548  44554  44560  44562  44568  44572  44574  44580  44584  44590  44598  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网