11.(2010年北京东城区目标检测)电子由静止开始经M、N板间(两板间的电压为U)的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图11-2-30所示.则:
|
图11-2-30 |
(1)正确画出电子由静止开始直至离开匀强磁场时的轨迹图;(用尺和圆规规范作图)
(2)求匀强磁场的磁感应强度B.(已知电子的质量为m,电荷量为e)
解析:(1)电子经电场和磁场中的轨迹如图中实线所示.
(2)设电子在M、N两板间经电场加速后获得的速度为v,由动能定理得:
eU=mv2①
电子进入磁场后做匀速圆周运动,设其半径为r,则:
evB=m②
由几何关系得:r2=(r-L)2+d2③
联立①②③式求解得:B= .
答案:(1)见解析图 (2)
9.(2010年福建泉州质检)如图11-2-28所示是某粒子速度选择器的示意图,在一半径为R=10 cm的圆柱形桶内有B=10-4 T的匀强磁场,方向平行于轴线,在圆柱桶某一直径的两端开有小孔,作为入射孔和出射孔.粒子束以不同角度入射,最后有不同速度的粒子束射出.现有一粒子源发射比荷为=2×1011 C/kg的阳离子,粒子束中速度分布连续.当角θ=45°时,出射粒子速度v的大小是( )
A.×106 m/s B.2×106 m/s
C.2×108 m/s D.4×106 m/s
解析:选B.由题意知,粒子从入射孔以45°角射入匀强磁场,粒子在匀强磁场中做匀速圆周运动.能够从出射孔射出的粒子刚好在磁场中运动周期,由几何关系知r=R,又r=,解得v==2×106 m/s.
|
图11-2-29 |
(1)粒子的轨迹半径;
(2)粒子在磁场中运动的最长时间.
解析:(1)由牛顿第二定律可求得粒子在磁场中运动的半径,
qv0B=m,
R==5.0×10-2 m.
(2)由于R>r,要使粒子在磁场中运动的时间最长,则粒子在磁场中运动的圆弧所对应的弧长最长,从图中可以看出,以直径ab为弦、R为半径所作的圆周,粒子运动时间最长,T=,
运动时间tm=×T=,
又sinα==,所以tm=6.5×10-8 s.
答案:(1)5.0×10-2 m (2)6.5×10-8 s
5.如图11-2-23所示,一水平导线通以电流I,导线下方有一电子,初速度方向与电流平行,关于电子的运动情况,下述说法中,正确的是( )
|
图11-2-23 |
B.沿路径a运动,其轨道半径越来越小
C.沿路径b运动,其轨道半径越来越小
D.沿路径b运动,其轨道半径越来越大
答案:A
|
图11-2-24 |
A.离子由加速器的中心附近进入加速器
B.离子由加速器的边缘进入加速器
C.离子从磁场中获得能量
D.离子从电场中获得能量
解析:选AD.由R=知,随着被加速离子的速度增大,离子在磁场中做圆周运动的轨道半径逐渐增大,所以离子必须由加速器中心附近进入加速器,A项正确,B项错误;离子在电场中被加速,使动能增加;在磁场中洛伦兹力不做功,离子做匀速圆周运动,动能不改变.磁场的作用是改变离子的速度方向,所以C项错误,D项正确.
|
图11-2-25 |
A.运动时间相同
B.运动轨道的半径相同
C.重新回到边界时速度的大小和方向相同
D.重新回到边界的位置与O点距离相等
|
图11-2-26 |
图11-2-27
解析:选A.由左手定则判断,可知磁场B的方向先向外后向里,A对.
|
图11-2-28 |
2.(2009年高考安徽理综卷)如图11-2-20是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹.云室放置在匀强磁场中,磁场方向垂直照片向里.云室中横放的金属板对粒子的运动起阻碍作用.分析此径迹可知粒子( )
A.带正电,由下往上运动 B.带正电,由上往下运动
C.带负电,由上往下运动 D.带负电,由下往上运动
解析:选A.由图可以看出,上方的轨迹半径小,说明粒子的速度小,所以粒子是从下方往上方运动;再根据左手定则,可以判定粒子带正电,故选A.
|
图11-2-21 |
A.小球带正电荷 B.小球做类平抛运动
C.洛伦兹力对小球做正功 D.管壁的弹力对小球做正功
答案:ABD
|
图11-2-22 |
A.使磁感应强度B的数值增大
B.使磁场以速率v=向上移动
C.使磁场以速率v=向右移动
D.使磁场以速率v=向左移动
解析:选D.假定磁场不动,小球应向右运动且有mg=qvB.由相对运动知D对.
2.如图11-3-16所示,虚线间空间存在由匀强电场E和匀强磁场B组成的正交或平行的电场和磁场,有一个带正电小球(电荷量为+q,质量为m)从正交或平行的电磁混合场上方的某一高度自由落下,那么,带电小球一定沿直线通过下列的哪个电磁复合场( )
图11-3-16
解析:选D.带电小球在复合场中的受力情况如图所示,A中由于小球所受合外力不为零,所以洛伦兹力不恒定,因此水平方向上的合力不可能为零,故A错;B图中垂直纸面向外的方向上只有一个洛伦兹力,这种情况下小球不可能沿竖直方向运动;C图中小球受力可能不为零,小球可能不沿直线运动;D图中小球只受竖直方向的两个力作用,一定沿竖直线运动,故D对.
|
图11-3-17 |
A.它们的动能一定各不相同
B.它们的电量一定各不相同
C.它们的质量一定各不相同
D.它们的荷质比一定各不相同
解析:选D.在电磁场中,正离子受到的洛伦兹力F洛与电场力F电相等,从而做直线运动,有Eq=qvB1,v=,即所有正离子速度都相同,当正离子进入磁场B2中时,r=,正离子分成几束,则r不同,荷质比一定各不相同,D正确.
|
图11-3-18 |
A.若污水中正离子较多,则前表面比后表面电势高
B.若污水中负离子较多,则前表面比后表面电势高
C.污水中离子浓度越高电压表的示数将越大
D.污水流量Q与U成正比
解析:选D.由左手定则可判断出,正离子受到的洛伦兹力使其向后表面偏转聚集而导致后表面电势升高,同理负离子较多时,负离子向前表面偏转聚集而导致前表面电势较低,故A、B均错;设前后表面的最高电压为U,则=qvB.所以U=vBb,所以U与离子浓度无关,C错;因Q=vbc,而U=vBb,所以 Q=,D对.
|
图11-3-19 |
A.适当减小电场强度E B.适当减小磁感应强度B
C.适当增大加速电场的宽度 D.适当增大加速电压U
解析:选AD.要想使电子沿直线通过,则必须有qvB=qE,而电子经过加速电场加速时,qU=mv2,现在发现电子向上极板偏转,说明电场力大于洛伦兹力,因此需减小电场力或增大洛伦兹力,A、D选项正确.
|
图11-3-20 |
A.t1>t2
B.t1<t2
C.t1=t2
D.t1、t2的大小关系与电场、磁场的强度有关
解析:选B.只加竖直方向的匀强电场时,质子在电场中做类平抛运动,在水平方向上做匀速直线运动,速度大小始终等于初速度v0,如果只加匀强磁场时,质子在磁场中做匀速圆周运动,在运动过程中,沿水平方向的速度逐渐减小,如图所示,v=v0cos α,整个运动过程中沿水平方向的平均速度小于v0,所以当加磁场时,用的时间长,故A、C、D错误,B项正确.
|
图11-3-21 |
|
11-3-21 |
A.滑块受到的摩擦力不变
B.滑块到达地面时的动能与B的大小无关
C.滑块受到的洛伦兹力方向垂直斜面向下
D.B很大时,滑块可能静止于斜面上
解析:选C.滑块受重力、支持力、洛伦兹力、摩擦力,如图所示.由左手定则首先容易判断洛伦兹力的方向为垂直斜面向下,C正确;由F洛=QvB,当速度发生变化时,洛伦兹力变化,由FN=F洛+mgcos θ,支持力也随之变化,由Ff=μFN知摩擦力也随之变化,A错误;磁场B的大小最终影响摩擦力的大小,影响滑块到达地面的过程中摩擦力做功的大小,滑块到达地面时的动能与B的大小有关,B错误.滑块从斜面顶端由静止下滑,所以中间不可能静止在斜面上,D错误.
|
图11-3-22 |
A.A对B的压力变小
B.A、B之间的摩擦力保持不变
C.A对B的摩擦力变大
D.B对地面的压力保持不变
解析:选B.由牛顿第二定律:F=(mA+mB)a,a=,A、B间摩擦力Ff=mA·a=F,保持不变,B正确,C错.由左手定则可知,A受洛伦兹力向下,所以A对B、B对地面的压力均变大,A、D错.故应选B
|
图11-3-23 |
A.带有电量为的正电荷
B.沿圆周逆时针运动
C.运动的角速度为
D.运动的速率为
解析:选C.由于粒子做匀速圆周运动,则重力和电场力平衡,故粒子带负电,带电量q=,A错.由左手定则知粒子顺时针转动,B错.根据qvB=mωv,则ω==,C正确.无法确定v的大小,D错.
|
图11-3-24 |
解析:因带电微粒恰能在复合场中做匀速直线运动,故其所受的重力mg,电场力F电及洛伦兹力F洛三者合力为零.其受力情况如图所示.
则有F电=mgtan45°=mg
F洛sin45°=mg,即qE=mg,
qvBsin45°=mg
所以E=,B==.