2009年高考数学总复习解题思维专题讲座之三
数学思维的严密性
一、概述
在中学数学中,思维的严密性表现为思维过程服从于严格的逻辑规则,考察问题时严格、准确,进行运算和推理时精确无误。数学是一门具有高度抽象性和精密逻辑性的科学,论证的严密性是数学的根本特点之一。但是,由于认知水平和心里特征等因素的影响,中学生的思维过程常常出现不严密现象,主要表现在以下几个方面:
概念模糊 概念是数学理论体系中十分重要的组成部分。它是构成判断、推理的要素。因此必须弄清概念,搞清概念的内涵和外延,为判断和推理奠定基础。概念不清就容易陷入思维混乱,产生错误。
判断错误 判断是对思维对象的性质、关系、状态、存在等情况有所断定的一种思维形式。数学中的判断通常称为命题。在数学中,如果概念不清,很容易导致判断错误。例如,“函数是一个减函数”就是一个错误判断。
推理错误 推理是运用已知判断推导出新的判断的思维形式。它是判断和判断的联合。任何一个论证都是由推理来实现的,推理出错,说明思维不严密。
例如,解不等式
解
或 这个推理是错误的。在由推导时,没有讨论的正、负,理由不充分,所以出错。
二、思维训练实例
例1、 不等式
错误解法
错误分析 当时,真数且在所求的范围内(因 ),说明解法错误。原因是没有弄清对数定义。此题忽视了“对数的真数大于零”这一条件造成解法错误,表现出思维的不严密性。
正确解法
例2、 求过点的直线,使它与抛物线仅有一个交点。
错误解法 设所求的过点的直线为,则它与抛物线的交点为
,消去得:
整理得 直线与抛物线仅有一个交点,
解得所求直线为
错误分析 此处解法共有三处错误:
第一,设所求直线为时,没有考虑与斜率不存在的情形,实际上就是承认了该直线的斜率是存在的,且不为零,这是不严密的。
第二,题中要求直线与抛物线只有一个交点,它包含相交和相切两种情况,而上述解法没有考虑相切的情况,只考虑相交的情况。原因是对于直线与抛物线“相切”和“只有一个交点”的关系理解不透。
第三,将直线方程与抛物线方程联立后得一个一元二次方程,要考虑它的判别式,所以它的二次项系数不能为零,即而上述解法没作考虑,表现出思维不严密。
正确解法 当所求直线斜率不存在时,即直线垂直轴,因为过点,所以即轴,它正好与抛物线相切。
当所求直线斜率为零时,直线为平行轴,它正好与抛物线只有一个交点。
设所求的过点的直线为则
, 令解得所求直线为
综上,满足条件的直线为:
(2) 判断的训练
造成判断错误的原因很多,我们在学习中,应重视如下几个方面。
①注意定理、公式成立的条件
数学上的定理和公式都是在一定条件下成立的。如果忽视了成立的条件,解题中难免出现错误。
例3、 实数,使方程至少有一个实根。
错误解法 方程至少有一个实根,
或
错误分析 实数集合是复数集合的真子集,所以在实数范围内成立的公式、定理,在复数范围内不一定成立,必须经过严格推广后方可使用。一元二次方程根的判别式是对实系数一元二次方程而言的,而此题目盲目地把它推广到复系数一元二次方程中,造成解法错误。
正确解法 设是方程的实数根,则
由于都是实数,
解得
例4 已知双曲线的右准线为,右焦点,离心率,求双曲线方程。
错解1
故所求的双曲线方程为
错解2 由焦点知
故所求的双曲线方程为
错解分析 这两个解法都是误认为双曲线的中心在原点,而题中并没有告诉中心在原点这个条件。由于判断错误,而造成解法错误。随意增加、遗漏题设条件,都会产生错误解法。
正解1 设为双曲线上任意一点,因为双曲线的右准线为,右焦点,离心率,由双曲线的定义知
整理得
正解2 依题意,设双曲线的中心为
则 解得
所以
故所求双曲线方程为
②注意充分条件、必要条件和充分必要条件在解题中的运用
我们知道:
如果成立,那么成立,即,则称是的充分条件。
如果成立,那么成立,即,则称是的必要条件。
如果,则称是的充分必要条件。
充分条件和必要条件中我们的学习中经常遇到。像讨论方程组的解,求满足条件的点的轨迹等等。但充分条件和必要条件中解题中的作用不同,稍用疏忽,就会出错。
例5 解不等式
错误解法 要使原不等式成立,只需
解得
错误分析 不等式成立的充分必要条件是:或
原不等式的解法只考虑了一种情况,而忽视了另一种情况,所考虑的情况只是原不等式成立的充分条件,而不是充分必要条件,其错误解法的实质,是把充分条件当成了充分必要条件。
正确解法 要使原不等式成立,则
或
,或
原不等式的解集为
例6(轨迹问题)求与轴相切于右侧,并与
⊙也相切的圆的圆心
的轨迹方程。
错误解法 如图3-2-1所示,
已知⊙C的方程为
设点为所求轨迹上任意一点,并且⊙P与轴相切于M点,
与⊙C相切于N点。根据已知条件得
,即
化简得
错误分析 本题只考虑了所求轨迹的纯粹性(即所求的轨迹上的点都满足条件),而没有考虑所求轨迹的完备性(即满足条件的点都在所求的轨迹上)。事实上,符合题目条件的点的坐标并不都满足所求的方程。从动圆与已知圆内切,可以发现以轴正半轴上任一点为圆心,此点到原点的距离为半径(不等于3)的圆也符合条件,所以也是所求的方程。即动圆圆心的轨迹方程是
。因此,在求轨迹时,一定要完整的、细致地、周密地分析问题,这样,才能保证所求轨迹的纯粹性和完备性。
③防止以偏概全的错误
以偏概全是指思考不全面,遗漏特殊情况,致使解答不完全,不能给出问题的全部答案,从而表现出思维的不严密性。
例7 设等比数列的全项和为.若,求数列的公比.
错误解法
错误分析 在错解中,由
时,应有在等比数列中,是显然的,但公比完全可能为1,因此,在解题时应先讨论公比的情况,再在的情况下,对式子进行整理变形。
正确解法 若,则有
但,即得与题设矛盾,故.
又依题意
可得
即
因为,所以所以
所以
说明 此题为1996年全国高考文史类数学试题第(21)题,不少考生的解法同错误解法,根据评分标准而痛失2分。
④避免直观代替论证
我们知道直观图形常常为我们解题带来方便。但是,如果完全以图形的直观联系为依据来进行推理,这就会使思维出现不严密现象。
例8 (如图3-2-2),具有公共轴的两个直角坐标平面和所成的二面角等于.已知内的曲线的方程是,求曲线在内的射影的曲线方程。
错误解法 依题意,可知曲线是抛物线,
在内的焦点坐标是
因为二面角等于,
且所以
设焦点在内的射影是,那么,位于轴上,
从而
所以所以点是所求射影的焦点。依题意,射影是一条抛物线,开口向右,顶点在原点。
所以曲线在内的射影的曲线方程是
错误分析 上述解答错误的主要原因是,凭直观误认为
。
正确解法 在内,设点是曲线上任意一点
(如图3-2-3)过点作,垂足为,
过作轴,垂足为连接,
则轴。所以是二面角
的平面角,依题意,.
在
又知轴(或与重合),
轴(或与重合),设,
则
因为点在曲线上,所以
即所求射影的方程为
(3) 推理的训练
数学推理是由已知的数学命题得出新命题的基本思维形式,它是数学求解的核心。以已知的真实数学命题,即定义、公理、定理、性质等为依据,选择恰当的解题方法,达到解题目标,得出结论的一系列推理过程。在推理过程中,必须注意所使用的命题之间的相互关系(充分性、必要性、充要性等),做到思考缜密、推理严密。
例9 设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的最远距离是,求这个椭圆的方程。
错误解法 依题意可设椭圆方程为
则 ,
所以 ,即
设椭圆上的点到点的距离为,
则
所以当时,有最大值,从而也有最大值。
所以 ,由此解得:
于是所求椭圆的方程为
错解分析 尽管上面解法的最后结果是正确的,但这种解法却是错误的。结果正确只是碰巧而已。由当时,有最大值,这步推理是错误的,没有考虑到的取值范围。事实上,由于点在椭圆上,所以有,因此在求的最大值时,应分类讨论。即:
若,则当时,(从而)有最大值。
于是从而解得
所以必有,此时当时,(从而)有最大值,
所以,解得
于是所求椭圆的方程为
例10 求的最小值
错解1
错解2
错误分析 在解法1中,的充要条件是
即这是自相矛盾的。
在解法2中,的充要条件是
这是不可能的。
正确解法1
其中,当
正 确 解 法2 取正常数,易得
其中“”取“=”的充要条件是
因此,当