网址:http://m.1010jiajiao.com/timu_id_105990[举报]
①平面内到定点A(1,0)和定直线l:x=2的距离之比为的点的轨迹方程是;
②点P是抛物线y2=2x上的动点,点P在y轴上的射影是M点A的坐标是A(3,6),则|PA|+|PM|的最小值是6;
③平面内到两定点距离之比等于常数λ(λ>0)的点的轨迹是圆;
④若动点M(x,y)满足,则动点M的轨迹是双曲线;
⑤若过点C(1,1)的直线l交椭圆于不同的两点A,B,且C是AB的中点,则直线l的方程是3x+4y-7=0.
其中真命题的序号是 .(写出所有真命题的序号) 查看习题详情和答案>>
①平面内到定点A(1,0)和定直线l:x=2的距离之比为
1 |
2 |
x2 |
4 |
y2 |
3 |
②点P是抛物线y2=2x上的动点,点P在y轴上的射影是M点A的坐标是A(3,6),则|PA|+|PM|的最小值是6;
③平面内到两定点距离之比等于常数λ(λ>0)的点的轨迹是圆;
④若动点M(x,y)满足
(x-1)2+(y+2)2 |
⑤若过点C(1,1)的直线l交椭圆
x2 |
4 |
y2 |
3 |
其中真命题的序号是
(08年重点中学联考一理) 以下四个关于圆锥曲线的命题中:
①平面内到定点A(1,0)和定直线l:x=2的距离之比为的点的轨迹方程是:
②点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A的坐标是A(3,6),则
|PA|+|PM|的最小值是6;
③平面内到两定点距离之比等于常数λ(λ>0)的点的轨迹是圆;
④若过点C(1,1)的直线l交椭圆于不同的两点A、B,且C是AB的中点,则直线l的方程是3x+4y-7=0:
其中真命题的序号是 (写出所有真命题的序号)
查看习题详情和答案>>17世纪,科学家们致力于运动的研究,如计算天体的位置,远距离航海中对经度和纬度的测量,炮弹的速度对于高度和射程的影响等.诸如此类的问题都需要探究两个变量之间的关系,并根据这种关系对事物的变化规律作出判断,如根据炮弹的速度推测它能达到的高度和射程.这正是函数产生和发展的背景.
“function”一词最初由德国数学家莱布尼兹(G.W.Leibniz,1646~1716)在1692年使用.在中国,清代数学家李善兰(1811~1882)在1859年和英国传教士伟烈亚力合译的《代徽积拾级》中首次将“function”译做“函数”.
莱布尼兹用“函数”表示随曲线的变化而改变的几何量,如坐标、切线等.1718年,他的学生,瑞士数学家约翰·伯努利(J.Bernoulli,1667~1748)强调函数要用公式表示.后来,数学家认为这不是判断函数的标准.只要一些变量变化,另一些变量随之变化就可以了.所以,1755年,瑞士数学家欧拉(L.Euler,1707~1783)将函数定义为“如果某些变量,以一种方式依赖于另一些变量,我们将前面的变量称为后面变量的函数”.
当时很多数学家对于不用公式表示函数很不习惯,甚至抱怀疑态度.函数的概念仍然是比较模糊的.
随着对微积分研究的深入,18世纪末19世纪初,人们对函数的认识向前推进了.德国数学家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数”.这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个法则是公式、图象、表格还是其他形式.19世纪70年代以后,随着集合概念的出现,函数概念又进而用更加严谨的集合和对应语言表述,这就是本节学习的函数概念.
综上所述可知,函数概念的发展与生产、生活以及科学技术的实际需要紧密相关,而且随着研究的深入,函数概念不断得到严谨化、精确化的表达,这与我们学习函数的过程是一样的.
你能以函数概念的发展为背景,谈谈从初中到高中学习函数概念的体会吗?
1.探寻科学家发现问题的过程,对指导我们的学习有什么现实意义?
2.莱布尼兹、狄利克雷等科学家有哪些品质值得我们学习?