[例1]已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若mn∈[-1,1],m+n≠0时>0. 

(1)用定义证明f(x)在[-1,1]上是增函数;

(2)解不等式  f(x+)<f();

(3)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围 

 (1).证明  任取x1x2,且x1x2∈[-1,1],

f(x1)-f(x2)=f(x1)+f(-x2)

=·(x1x2)

∵-1≤x1x2≤1,

x1+(-x2)≠0,由已知>0,又 x1x2<0,

f(x1)-f(x2)<0,即f(x)在[-1,1]上为增函数.

(2)解  ∵f(x)在[-1,1]上为增函数,

  解得:{x|-x<-1,x∈R}

(3)解  由(1)可知f(x)在[-1,1]上为增函数,且f(1)=1,

故对x∈[-1,1],恒有f(x)≤1,

所以要使f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,即要t2-2at+1≥1成立,

t2-2at≥0,记g(a)=t2-2at,对a∈[-1,1],有

g(a)≥0,

只需g(a)在[-1,1]上的最小值大于等于0,

g(-1)≥0,g(1)≥0,

解得,t≤-2或t=0或t≥2

t的取值范围是  {t|t≤-2或t=0或t≥2}

◆提炼方法 函数的单调性的判定就是不等式的判定,题(2)中利用单调性把函数值的大小关系转化为自变量的大小关系是最常用的手法,要熟练掌握.

[例2]已知奇函数f(x) 在(-∞,0)∪(0,+∞)上有定义,在(0,+∞)上是增函数,f(1)=0,又知函数:

集合

,求MN

解:f(x)是奇函数, 在(0,+∞)上递增,则f(x) 在(-∞,0)也递增.又由f(1)=0得f(-1)=0.

令t=cosθ则t∈[0,1],又设

 

要使δ(t)<0,必须使δ(t)在[0,1]内最大值小于零.

10

30

    

综上: 

[例3]已知某种商品的定价上涨成(1成即为成即为),其销售量便相应减少成,按规定,税金是从销售额中按一定的比例缴纳,如果这种商品的定价无论如何变化,从销售额中扣除税金后的金额总比涨价前的销售额少,试求这时税率的取值范围(精确到0.1% )

解:设原定价为元/件,原销售量为件,则原销售额为元,由已知得

     ①

①式恒成立,

∴△<0,解得,故11.1%<<1,

即税率的取值范围∈(11.1%,100%).

[例4]设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为λ(λ<1),画面的上下各留8cm的空白,左右各留5cm的空白,问怎样确定画面的高与宽的尺寸,能使宣传画所用纸张面积最小?如果,那么为何值时,能使宣传画所用纸张面积最小?

解:设画面的高为,宽为,则,设纸张面积为,则有

当且仅当时,即时,取最小值,此时,高

.

如果,则上述等号不能成立.现证函数

S(λ)在上单调递增.设,

 

因为

所以,故上单调递增,因此对,当时,取得最小值.

提炼方法: 用均值不等式求最值时,如果满足“一正二定三相等”,则可直接求解;如果不符合条件中的相等,则应先判断函数的单调性后在求解.

[研讨.欣赏]已知抛物线y=ax2-1上存在关于直线x+y=0成轴对称的两点,试求实数a的取值范围.

解法一:设抛物线上关于直线l对称的两相异点为P(x1y1)、Q(x2y2),线段PQ的中点为M(x0y0),设直线PQ的方程为y=x+b,由于PQ两点存在,所以方程组有两组不同的实数解,即得方程

ax2x-(1+b)=0.          ①

判别式Δ=1+4a(1+b)>0.        ②

由①得x0==y0=x0+b=+b.

Ml,∴0=x0+y0=++b

b=-,代入②解得a.

解法二:设同解法一,由题意得

将①②代入③④,并注意到a≠0,x1x2≠0,得

由二元均值不等式易得

2(x12+x22)>(x1+x2)2(x1x2).

将⑤⑥代入上式得

2(-+)>()2,解得a.

解法三:同解法二,由①-②,得

y1y2=a(x1+x2)(x1x2).

x1x2≠0,∴a(x1+x2)==1.

x0==.∵M(x0y0)∈l

y0+x0=0,即y0=-x0=-,从而PQ的中点M的坐标为(,-).

M在抛物线内部,

a()2-(-)-1<0.

解得a.(舍去a<0,为什么?)

 0  399370  399378  399384  399388  399394  399396  399400  399406  399408  399414  399420  399424  399426  399430  399436  399438  399444  399448  399450  399454  399456  399460  399462  399464  399465  399466  399468  399469  399470  399472  399474  399478  399480  399484  399486  399490  399496  399498  399504  399508  399510  399514  399520  399526  399528  399534  399538  399540  399546  399550  399556  399564  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网