4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决.

空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,],直线与平面所成的角θ∈,二面角的大小,可用它们的平面角来度量,其平面角θ∈0,π

对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力.

如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角a-l-b的平面角(记作q)通常有以下几种方法:

(1) 根据定义;

(2) 过棱l上任一点O作棱l的垂面g,设g∩a=OA,g∩b=OB,则∠AOBq

(3) 利用三垂线定理或逆定理,过一个半平面a内一点A,分别作另一个平面b的垂线AB(垂足为B),或棱l的垂线AC(垂足为C),连结AC,则∠ACBq 或∠ACB=p-q

(4) 设A为平面a外任一点,AB⊥a,垂足为BAC⊥b,垂足为C,则∠BACq或∠BAC=p-q

(5) 利用面积射影定理,设平面a内的平面图形F的面积为SF在平面b内的射影图形的面积为S¢,则cosq.

 0  399317  399325  399331  399335  399341  399343  399347  399353  399355  399361  399367  399371  399373  399377  399383  399385  399391  399395  399397  399401  399403  399407  399409  399411  399412  399413  399415  399416  399417  399419  399421  399425  399427  399431  399433  399437  399443  399445  399451  399455  399457  399461  399467  399473  399475  399481  399485  399487  399493  399497  399503  399511  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网