11.假设关于某种设备的使用年限x(年)与所支出的维修费用y(万元)有如下统计资料:
参考数据:$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90,$\sum_{i=1}^{5}$xiyi=112.3.
(1)作出散点图
(2)求出回归直线方程,并估计使用年限为10年时,维修费用约是多少?
| x | 2 | 3 | 4 | 5 | 6 |
| y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)作出散点图
(2)求出回归直线方程,并估计使用年限为10年时,维修费用约是多少?
10.已知集合A={x|x2-4x-5>0},B={x|x>2},则集合A∩B=( )
| A. | ∅ | B. | (-∞,1) | C. | (2,+∞) | D. | (5,+∞) |
9.
某几何体的三视图如图所示,则该几何体的外接球的表面积为( )
| A. | 13π | B. | 16π | C. | 17π | D. | 21π |
8.
中央电视台为了解一档诗歌类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如茎叶图所示:其中一个数字被污损
(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率;
(2)随着节目的播出,极大激发了观众对诗歌知识的学习积累热情,从中获益匪浅.现从观看该节目的观众中随机统计了4位观众的周均学习诗歌知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如表所示):
由表中数据,试求线性回归方程$\hat y=\hat bx+\hat a$,并预测年龄在60岁的观众周均学习诗歌知识的时间.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=i}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=i}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率;
(2)随着节目的播出,极大激发了观众对诗歌知识的学习积累热情,从中获益匪浅.现从观看该节目的观众中随机统计了4位观众的周均学习诗歌知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如表所示):
| 年龄x(岁) | 20 | 30 | 40 | 50 |
| 周均学习成语知识时间y(小时) | 2.5 | 3 | 4 | 4.5 |
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=i}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=i}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
3.将函数f(x)=$\sqrt{3}$sin$\frac{x}{2}$-cos$\frac{x}{2}$的图象向右平移$\frac{2π}{3}$个单位长度得到函数y=g(x)的图象,则函数y=g(x)的一个单调递减区间是( )
0 240740 240748 240754 240758 240764 240766 240770 240776 240778 240784 240790 240794 240796 240800 240806 240808 240814 240818 240820 240824 240826 240830 240832 240834 240835 240836 240838 240839 240840 240842 240844 240848 240850 240854 240856 240860 240866 240868 240874 240878 240880 240884 240890 240896 240898 240904 240908 240910 240916 240920 240926 240934 266669
| A. | (-$\frac{π}{4}$,$\frac{π}{2}$) | B. | ($\frac{π}{2}$,π) | C. | (-$\frac{π}{2}$,-$\frac{π}{4}$) | D. | ($\frac{3π}{2}$,2π) |