题目内容

7.(1)已知(1-x+x23(1-2x24=a0+a1x+a2x2+…+a14x14,求a1+a3+a5+…+a13的值.
(2)已知${({x+1})^2}{({x+2})^{2015}}={a_0}+{a_1}({x+2})+{a_2}{({x+2})^2}+…+{a_{2017}}{({x+2})^{2017}}$,求$\frac{a_1}{2}+\frac{a_2}{2^2}+…+\frac{{{a_{2017}}}}{{{2^{2017}}}}$的值.

分析 (1)可令x=1,x=-1,两式相减,计算即可得到所求和;
(2)可令x=-2,x=-$\frac{3}{2}$,代入恒等式,即可得到所求和.

解答 解:(1)(1-x+x23(1-2x24=a0+a1x+a2x2+…+a14x14
令x=1可得1=a0+a1+a2+…+a14
可令x=-1可得27=a0-a1+a2-…+a14
两式相减可得,a1+a3+a5+…+a13=$\frac{1}{2}$×(1-27)=-13;
(2)${({x+1})^2}{({x+2})^{2015}}={a_0}+{a_1}({x+2})+{a_2}{({x+2})^2}+…+{a_{2017}}{({x+2})^{2017}}$,
令x=-2可得0=a0
令x=-$\frac{3}{2}$可得$\frac{1}{4}$×($\frac{1}{2}$)2015=a0+$\frac{a_1}{2}+\frac{a_2}{2^2}+…+\frac{{{a_{2017}}}}{{{2^{2017}}}}$,
可得$\frac{a_1}{2}+\frac{a_2}{2^2}+…+\frac{{{a_{2017}}}}{{{2^{2017}}}}$=($\frac{1}{2}$)2017

点评 本题考查二项式定理的运用:求指定项的系数和,注意运用赋值法,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网