ÌâÄ¿ÄÚÈÝ
8£®£¨1£©Çó¶«²¿¸÷³ÇÊйۿ´¸Ã½ÚÄ¿¹ÛÖÚÆ½¾ùÈËÊý³¬¹ýÎ÷²¿¸÷³ÇÊйۿ´¸Ã½ÚÄ¿¹ÛÖÚÆ½¾ùÈËÊýµÄ¸ÅÂÊ£»
£¨2£©Ëæ×ŽÚÄ¿µÄ²¥³ö£¬¼«´ó¼¤·¢Á˹ÛÖÚ¶ÔÊ«¸è֪ʶµÄѧϰ»ýÀÛÈÈÇ飬´ÓÖлñÒæ·Ëdz£®ÏÖ´Ó¹Û¿´¸Ã½ÚÄ¿µÄ¹ÛÖÚÖÐËæ»úͳ¼ÆÁË4λ¹ÛÖÚµÄÖܾùѧϰʫ¸è֪ʶµÄʱ¼ä£¨µ¥Î»£ºÐ¡Ê±£©ÓëÄêÁ䣨µ¥Î»£ºË꣩£¬²¢ÖÆ×÷Á˶ÔÕÕ±í£¨Èç±íËùʾ£©£º
| ÄêÁäx£¨Ë꣩ | 20 | 30 | 40 | 50 |
| Öܾùѧϰ³ÉÓï֪ʶʱ¼äy£¨Ð¡Ê±£© | 2.5 | 3 | 4 | 4.5 |
²Î¿¼¹«Ê½£º$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=i}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=i}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£®
·ÖÎö £¨1£©Çó³ö»ù±¾Ê¼þµÄ¸öÊý£¬¼´¿ÉÇó³ö¸ÅÂÊ£»
£¨2£©Çó³ö»Ø¹éϵÊý£¬¿ÉµÃ»Ø¹é·½³Ì£¬ÔÙÔ¤²âÄêÁäΪ50Ëê¹ÛÖÚÖܾùѧϰ³ÉÓï֪ʶʱ¼ä£®
½â´ð ½â£º£¨1£©Éè±»ÎÛËðµÄÊý×ÖΪa£¬ÔòaÓÐ10ÖÖÇé¿ö£®
Áî88+89+90+91+92£¾83+83+97+90+a+99£¬Ôòa£¼8£¬
¡à¶«²¿¸÷³ÇÊйۿ´¸Ã½ÚÄ¿¹ÛÖÚÆ½¾ùÈËÊý³¬¹ýÎ÷²¿¸÷³ÇÊйۿ´¸Ã½ÚÄ¿¹ÛÖÚÆ½¾ùÈËÊý£¬ÓÐ8ÖÖÇé¿ö£¬
Æä¸ÅÂÊΪ$\frac{8}{10}$=$\frac{4}{5}$£»
£¨2£©$\overline{x}$=35£¬$\overline{y}$=3.5£¬
$\widehat{b}$=$\frac{525-10¡Á35¡Á3.5}{5400-10¡Á352}$=$\frac{7}{100}$£¬
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=$\frac{21}{20}$£¬
¡à$\widehat{y}$=$\frac{7}{100}$x+$\frac{21}{20}$£®
x=60ʱ£¬$\widehat{y}$=5.25£®
µãÆÀ ±¾Ì⿼²é¹Åµä¸ÅÐ͸ÅÂʵļÆË㣬¿¼²é¶ÀÁ¢ÐÔ¼ìÑé֪ʶµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®ÒÑÖª$\overrightarrow a=£¨1£¬x£©£¬\overrightarrow b=£¨x-1£¬2£©$£¬Èô$\overrightarrow a$¡Î$\overrightarrow b$£¬ÔòʵÊýxµÄֵΪ£¨¡¡¡¡£©
| A£® | 2 | B£® | -1 | C£® | 1»ò-2 | D£® | -1»ò2 |
8£®º¯Êýf£¨x£©=x2+2£¨a-1£©x+2ÔÚÇø¼ä£¨-¡Þ£¬4]ÉÏÊǵ¥µ÷µÝ¼õµÄ£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | a¡Ü-3 | B£® | a¡Ý-3 | C£® | a¡Ü5 | D£® | a¡Ý5 |
3£®½«º¯Êýf£¨x£©=$\sqrt{3}$sin$\frac{x}{2}$-cos$\frac{x}{2}$µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{2¦Ð}{3}$¸öµ¥Î»³¤¶ÈµÃµ½º¯Êýy=g£¨x£©µÄͼÏó£¬Ôòº¯Êýy=g£¨x£©µÄÒ»¸öµ¥µ÷µÝ¼õÇø¼äÊÇ£¨¡¡¡¡£©
| A£® | £¨-$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}$£© | B£® | £¨$\frac{¦Ð}{2}$£¬¦Ð£© | C£® | £¨-$\frac{¦Ð}{2}$£¬-$\frac{¦Ð}{4}$£© | D£® | £¨$\frac{3¦Ð}{2}$£¬2¦Ð£© |
20£®Ä³»ð¹øµêΪÁË½âÆøÎ¶ÔÓªÒµ¶îµÄÓ°Ïì£¬Ëæ»ú¼Ç¼Á˸õê1Ô·ÝÖÐ5ÌìµÄÈÕÓªÒµ¶îy£¨µ¥Î»£ºÇ§Ôª£©Óë¸ÃµØµ±ÈÕ×îµÍÆøÎÂx£¨µ¥Î»£º¡æ£©µÄÊý¾Ý£¬Èç±í£º
£¨1£©Çóy¹ØÓÚxµÄ»Ø¹é·½³Ì$\hat y=\hat bx+\hat a$£»
£¨2£©Åж¨yÓëxÖ®¼äÊÇÕýÏà¹Ø»¹ÊǸºÏà¹Ø£»Èô¸ÃµØ1Ô·ÝijÌìµÄ×îµÍÆøÎÂΪ6¡æ£¬ÓÃËùÇ󻨹鷽³ÌÔ¤²â¸Ãµêµ±ÈÕµÄÓªÒµ¶î£®
£¨¸½£º»Ø¹é·½³Ì$\hat y=\hat bx+\hat a$ÖУ¬$\widehat{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£®£©
| x | 2 | 8 | 9 | 11 | 5 |
| y | 12 | 8 | 8 | 7 | 10 |
£¨2£©Åж¨yÓëxÖ®¼äÊÇÕýÏà¹Ø»¹ÊǸºÏà¹Ø£»Èô¸ÃµØ1Ô·ÝijÌìµÄ×îµÍÆøÎÂΪ6¡æ£¬ÓÃËùÇ󻨹鷽³ÌÔ¤²â¸Ãµêµ±ÈÕµÄÓªÒµ¶î£®
£¨¸½£º»Ø¹é·½³Ì$\hat y=\hat bx+\hat a$ÖУ¬$\widehat{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£®£©
17£®Ä³¿ÆÑÐС×é¶ÔÒ»ÖÖ¿ÉÀ䶳ʳÎï±£ÖÊÆÚÑо¿µÃ³ö£¬±£´æÎ¶ÈxÓë±£ÖÊÆÚÌìÊýyµÄÓйØÊý¾ÝÈç±í£º
¸ù¾ÝÒÔÉÏÊý¾Ý£¬ÓÃÏßÐԻعéµÄ·½·¨£¬ÇóµÃ±£ÖÊÆÚÌìÊýyÓë±£´æÎ¶ÈxÖ®¼äÏßÐԻع鷽³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$µÄϵÊý$\widehat{b}$=-2.5£¬ÔòÔ¤²âζÈΪ-7¡æÊ±¸ÃʳÎï±£ÖÊÆÚΪ£¨¡¡¡¡£©
| ζÈ/¡æ | -2 | -3 | -5 | -6 |
| ±£ÖÊÆÚ/ÌìÊý | 20 | 24 | 27 | 31 |
| A£® | 32Ìì | B£® | 33Ìì | C£® | 34Ìì | D£® | 35Ìì |
18£®É躯Êýf£¨x£©=log2x+ax+b£¨a£¾0£©£¬Èô´æÔÚʵÊýb£¬Ê¹µÃ¶ÔÈÎÒâµÄx¡Ê[t£¬t+2]£¨t£¾0£©¶¼ÓÐ|f£¨x£©|¡Ü1+a£¬ÔòtµÄ×îСֵÊÇ£¨¡¡¡¡£©
| A£® | 2 | B£® | 1 | C£® | $\frac{3}{4}$ | D£® | $\frac{2}{3}$ |