9、解:(1)由已知可设M(-c,y),
则有
+
=1.
∵M在第二象限,∴M(-c,
).
又由AB∥OM,可知kAB=kOM.
∴-
=-
.∴b=c.∴a=
b.
∴e=
=
.
(2)设|F1Q|=m,|F2Q|=n,
则m+n=2a,mn>0.|F1F2|=2c,a2=2c2,
∴cos∠F1QF2=![]()
=
=
-1
=
-1≥
-1=
-1=0.
当且仅当m=n=a时,等号成立.
故∠F1QF2∈[0,
].
(3)∵CD∥AB,kCD=-
=-
.
设直线CD的方程为y=-
(x+c),
即y=-
(x+b).
|
|
y=-
(x+b).
(a2+2b2)x2+2a2bx-a2b2=0.
设C(x1,y1)、D(x2,y2),∵a2=2b2,
∴x1+x2=-
=-
=-b,
x1·x2=-
=-
=-
.
∴|CD|=
|x1-x2|
=
·![]()
=
·
=
=3.
∴b2=2,则a2=4.
∴椭圆的方程为
+
=1.