21.(本小题满分13分)
我们知道:函数y=f (x)如果存在反函数y=f -1 (x),则y=f (x)的图像与y=f -1 (x)图像关于直线y=x对称。若y=f (x)的图像与y=f -1 (x)的图像有公共点,其公共点却不一定都在直线y=x上;例如函数f (x)=
。
(1)若函数y=f (x)在其定义域上是增函数,且y=f (x)的图像与其反函数y=f -1 (x)的图像有公共点,证明这些公共点都在直线y=x上;
(2)对问题:“函数f (x)=a x (a>1)与其反函数f -1 (x)=logax的图像有多少个公共点?”有如下观点:
观点①:“当a>1时两函数图像没有公共点,只有当0<a<1时两函数图像才有公共点”。
观点②:“利用(1)中的结论,可先讨论函数f (x)=a x (a>1)的图像与直线y=x的公共点的个数,为此可构造函数F (x)=a x-x(a>1),然后可利用F (x)的最小值进行讨论”。
请参考上述观点,讨论函数f (x)=ax (a>1)与其反函数f -1 (x)=logax图像公共点的个数。