27、(2011•毕节地区)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.

(1)求该抛物线的解析式.

(2)若过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.

(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.

考点:二次函数综合题。

分析:(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用交点式求出二次函数解析式;

(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;

(3)利用三角形相似求出△ABC∽△CBM,得出,即可求出圆的半径,即可得出P点的坐标.

解答:解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),

∴假设二次函数解析式为:y=a(x﹣1)(x﹣3),

将D(0,3),代入y=a(x﹣1)(x﹣3),得:

3=3a,

∴a=1,

∴抛物线的解析式为:y=(x﹣1)(x﹣3)=x2﹣4x+3;

(2)∵过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,

AC×BC=6,

∵抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,

∴二次函数对称轴为x=2,

∴AC=3,

∴BC=4,

∴B点坐标为:(2,4),

一次函数解析式为;y=kx+b,

解得:

y=x+

(3)∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,

MO⊥AB,AM=AC,PM=PC,

∵AC=1+2=3,BC=4,

∴AB=5,AM=3,

∴BM=2,

∵∠MBP=∠ABC,

∠BMP=∠ACB,

∴△ABC∽△CBM,

∴PC=1.5,

P点坐标为:(2,1.5).

点评:此题主要考查了二次函数的综合应用,二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.

 0  43483  43491  43497  43501  43507  43509  43513  43519  43521  43527  43533  43537  43539  43543  43549  43551  43557  43561  43563  43567  43569  43573  43575  43577  43578  43579  43581  43582  43583  43585  43587  43591  43593  43597  43599  43603  43609  43611  43617  43621  43623  43627  43633  43639  43641  43647  43651  43653  43659  43663  43669  43677  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网