摘要:如图.在平面直角坐标系中.抛物线y=ax2+bx+c和N(3.0)两点.且与y轴交于D(0.3).直线l是抛物线的对称轴. (1)求该抛物线的解析式. 的直线AB与抛物线的对称轴和x轴围成的三角形面积为6.求此直线的解析式. (3)点P在抛物线的对称轴上.⊙P与直线AB和x轴都相切.求点P的坐标. 考点:二次函数综合题. 分析:和N(3.0)两点.且与y轴交于D(0.3).可利用交点式求出二次函数解析式, (2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6.得出AC.BC的长.得出B点的坐标.即可利用待定系数法求出一次函数解析式, (3)利用三角形相似求出△ABC∽△CBM.得出.即可求出圆的半径.即可得出P点的坐标. 解答:解:(1)∵抛物线y=ax2+bx+c和N(3.0)两点.且与y轴交于D(0.3). ∴假设二次函数解析式为:y=a. 将D.得: 3=3a. ∴a=1. ∴抛物线的解析式为:y==x2﹣4x+3, 的直线AB与抛物线的对称轴和x轴围成的三角形面积为6. ∴AC×BC=6. ∵抛物线y=ax2+bx+c和N(3.0)两点. ∴二次函数对称轴为x=2. ∴AC=3. ∴BC=4. ∴B点坐标为:(2.4). 一次函数解析式为,y=kx+b. ∴. 解得:. y=x+, (3)∵当点P在抛物线的对称轴上.⊙P与直线AB和x轴都相切. ∴MO⊥AB.AM=AC.PM=PC. ∵AC=1+2=3.BC=4. ∴AB=5.AM=3. ∴BM=2. ∵∠MBP=∠ABC. ∠BMP=∠ACB. ∴△ABC∽△CBM. ∴. ∴. ∴PC=1.5. P点坐标为:. 点评:此题主要考查了二次函数的综合应用.二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.

网址:http://m.1010jiajiao.com/timu3_id_435801[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网