高考物理知识归纳(六)
----------------------磁场、电磁感应和交流电
磁场 基本特性,来源,
方向(小磁针静止时极的指向,磁感线的切线方向,外部(NS)内部(SN)组成闭合曲线
要熟悉五种典型磁场的磁感线空间分布(正确分析解答问题的关健)
脑中要有各种磁源产生的磁感线的立体空间分布观念;会从不同的角度看、画、识 各种磁感线分布图
能够将磁感线分布的立体、空间图转化成不同方向的平面图(正视、符视、侧视、剖视图)
安培右手定则:电产生磁 安培分子电流假说,磁产生的实质(磁现象电本质)奥斯特和罗兰实验
安培左手定则(与力有关) 磁通量概念一定要指明“是哪一个面积的、方向如何”且是双向标量
F安=B I L f洛=q B v 建立电流的微观图景(物理模型)
从安培力F=ILBsinθ和I=neSv推出f=qvBsinθ。
典型的比值定义
(E= E=k) (B= B=k ) (u=) ( R= R=) (C= C=)
磁感强度B:由这些公式写出B单位,单位公式
B= ; B= ; E=BLv B= ; B=k(直导体) ;B=NI(螺线管)
qBv = m R = B = ;
电学中的三个力:F电=q E =q F安=B I L f洛= q B v
注意:①、B⊥L时,f洛最大,f洛= q B v
(f 、B 、v三者方向两两垂直且力f方向时刻与速度v垂直)导致粒子做匀速圆周运动。
②、B || v时,f洛=0 做匀速直线运动。
③、B与v成夹角时,(带电粒子沿一般方向射入磁场),
可把v分解为(垂直B分量v⊥,此方向匀速圆周运动;平行B分量v|| ,此方向匀速直线运动。)
合运动为等距螺旋线运动。
带电粒子在磁场中圆周运动(关健是画出运动轨迹图,画图应规范)。
规律: (不能直接用)
1、找圆心:①(圆心的确定)因f洛一定指向圆心,f洛⊥v任意两个f洛方向的指向交点为圆心;
②任意一弦的中垂线一定过圆心; ③两速度方向夹角的角平分线一定过圆心。
2、求半径(两个方面):①物理规律
②由轨迹图得出几何关系方程 ( 解题时应突出这两条方程 )
几何关系:速度的偏向角=偏转圆弧所对应的圆心角(回旋角)=2倍的弦切角
相对的弦切角相等,相邻弦切角互补 由轨迹画及几何关系式列出:关于半径的几何关系式去求。
3、求粒子的运动时间:偏向角(圆心角、回旋角)=2倍的弦切角,即=2
×T
4、圆周运动有关的对称规律:特别注意在文字中隐含着的临界条件
a、从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。
b、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。
注意:均匀辐射状的匀强磁场,圆形磁场,及周期性变化的磁场。
电磁感应:.
1.法拉第电磁感应定律:电路中感应电动势的大小跟穿过这一电路的磁通量变化率成正比,这就是法拉第电磁感应定律。
内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
2.[感应电动势的大小计算公式]
1) E=BLV
(垂直平动切割)
2) …=?(普适公式) ε∝(法拉第电磁感应定律)
3) E= nBSωsin(ωt+Φ);Em=nBSω (线圈转动切割)
4)E=BL2ω/2
(直导体绕一端转动切割)
5)*自感E自=nΔΦ/Δt==L
( 自感 )
3.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量变化,这就是楞次定律。
内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
B感和I感的方向判定:楞次定律(右手) 深刻理解“阻碍”两字的含义(I感的B是阻碍产生I感的原因)
B原方向?;B原?变化(原方向是增还是减);I感方向?才能阻碍变化;再由I感方向确定B感方向。
楞次定律的多种表述
①从磁通量变化的角度:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
②从导体和磁场的相对运动:导体和磁体发生相对运动时,感应电流的磁场总是阻碍相对运动。
③从感应电流的磁场和原磁场:感应电流的磁场总是阻碍原磁场的变化。(增反、减同)
④楞次定律的特例──右手定则
在应用中常见两种情况:一是磁场不变,导体回路相对磁场运动;二是导体回路不动,磁场发生变化。
磁通量的变化与相对运动具有等效性:磁通量增加相当于导体回路与磁场接近,磁通量减少相当于导体回路与磁场远离。因此,
从导体回路和磁场相对运动的角度来看,感应电流的磁场总要阻碍相对运动;
从穿过导体回路的磁通量变化的角度来看,感应电流的磁场总要阻碍磁通量的变化。
能量守恒表述:I感效果总要反抗产生感应电流的原因
电磁感应现象中的动态分析,就是分析导体的受力和运动情况之间的动态关系。
一般可归纳为:
导体组成的闭合电路中磁通量发生变化导体中产生感应电流导体受安培力作用
导体所受合力随之变化导体的加速度变化其速度随之变化感应电流也随之变化
周而复始地循环,最后加速度小致零(速度将达到最大)导体将以此最大速度做匀速直线运动
“阻碍”和“变化”的含义
感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,而不是阻碍引起感应电流的磁场。因此,不能认为感应电流的磁场的方向和引起感应电流的磁场方向相反。
磁通量变化 感应电流
感应电流的磁场
发生电磁感应现象的这部分电路就相当于电源,在电源的内部,电流的方向是从低电势流向高电势。
4.电磁感应与力学综合
方法:从运动和力的关系着手,运用牛顿第二定律
(1)基本思路:受力分析→运动分析→变化趋向→确定运动过程和最终的稳定状态→由牛顿第二列方程求解.
(2)注意安培力的特点:
(3)纯力学问题中只有重力、弹力、摩擦力,电磁感应中多一个安培力,安培力随速度变化,部分弹力及相应的摩擦力也随之而变,导致物体的运动状态发生变化,在分析问题时要注意上述联系.
5.电磁感应与动量、能量的综合
方法:(1)从动量角度着手,运用动量定理或动量守恒定律
①应用动量定理可以由动量变化来求解变力的冲量,如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题.
②在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒.解决此类问题往往要应用动量守恒定律.
(2)从能量转化和守恒着手,运用动能定律或能量守恒定律
①基本思路:受力分析→弄清哪些力做功,正功还是负功→明确有哪些形式的能量参与转化,哪增哪减→由动能定理或能量守恒定律列方程求解.
②能量转化特点:其它能(如:机械能)电能内能(焦耳热)
6.电磁感应与电路综合
方法:在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路相当于电源.解决电磁感应与电路综合问题的基本思路是:
(1)明确哪部分相当于电源,由法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.
(2)画出等效电路图.
(3)运用闭合电路欧姆定律.串并联电路的性质求解未知物理量.
功能关系:电磁感应现象的实质是不同形式能量的转化过程。因此从功和能的观点入手,
分析清楚电磁感应过程中能量转化关系,往往是解决电磁感应问题的关健,也是处理此类题目的捷径之一。
交变电流 电磁场
交变电流(1)中性面线圈平面与磁感线垂直的位置,或瞬时感应电动势为零的位置。
中性面的特点:a.线圈处于中性面位置时,穿过线圈的磁通量Φ最大,但=0;
产生:矩形线圈在匀强磁场中绕与磁场垂直的轴匀速转动。
变化规律e=NBSωsinωt=Emsinωt;i=Imsinωt;(中性面位置开始计时),最大值Em=NBSω
四值:①瞬时值②最大值③有效值电流的热效应规定的;对于正弦式交流U==0.707Um ④平均值
不对称方波: 不对称的正弦波
求某段时间内通过导线横截面的电荷量Q=IΔt=εΔt/R=ΔΦ/R
我国用的交变电流,周期是0.02s,频率是50Hz,电流方向每秒改变100次。
表达式:e=e=220sin100πt=311sin100πt=311sin314t
线圈作用是“通直流,阻交流;通低频,阻高频”.
电容的作用是“通交流、隔直流;通高频、阻低频”.
变压器两个基本公式:① ②P入=P出,输入功率由输出功率决定,
远距离输电:一定要画出远距离输电的示意图来,
包括发电机、两台变压器、输电线等效电阻和负载电阻。并按照规范在图中标出相应的物理量符号。一般设两个变压器的初、次级线圈的匝数分别为、n1、n1/ n2、n2/,相应的电压、电流、功率也应该采用相应的符号来表示。
功率之间的关系是:P1=P1/,P2=P2/,P1/=Pr=P2。
电压之间的关系是:。
电流之间的关系是:.求输电线上的电流往往是这类问题的突破口。
输电线上的功率损失和电压损失也是需要特别注意的。
分析和计算时都必须用,而不能用。
特别重要的是要会分析输电线上的功率损失,
解决变压器问题的常用方法(解题思路)
①电压思路.变压器原、副线圈的电压之比为U1/U2=n1/n2;当变压器有多个副绕组时U1/n1=U2/n2=U3/n3=……
②功率思路.理想变压器的输入、输出功率为P入=P出,即P1=P2;当变压器有多个副绕组时P1=P2+P3+……
③电流思路.由I=P/U知,对只有一个副绕组的变压器有I1/I2=n2/n1;当变压器有多个副绕组时n1I1=n2I2+n3I3+……
④(变压器动态问题)制约思路.
(1)电压制约:当变压器原、副线圈的匝数比(n1/n2)一定时,输出电压U2由输入电压决定,即U2=n2U1/n1,可简述为“原制约副”.
(2)电流制约:当变压器原、副线圈的匝数比(n1/n2)一定,且输入电压U1确定时,原线圈中的电流I1由副线圈中的输出电流I2决定,即I1=n2I2/n1,可简述为“副制约原”.
(3)负载制约:①变压器副线圈中的功率P2由用户负载决定,P2=P负1+P负2+…;
②变压器副线圈中的电流I2由用户负载及电压U2确定,I2=P2/U2;
③总功率P总=P线+P2.
动态分析问题的思路程序可表示为:
U1P1
⑤原理思路.变压器原线圈中磁通量发生变化,铁芯中ΔΦ/Δt相等;当遇到“”型变压器时有
ΔΦ1/Δt=ΔΦ2/Δt+ΔΦ3/Δt,适用于交流电或电压(电流)变化的直流电,但不适用于恒定电流
长沙市一中2009年高考第一次模拟考试
文科数学
时量 150分钟 满分 150分
参考公式:
如果事件互斥,那么 球的表面积公式
如果事件相互独立,那么 其中表示球的半径
球的体积公式
如果事件在一次试验中发生的概率是,那么
次独立重复试验中事件恰好发生次的概率 其中表示球的半径
高考物理知识归纳(五)
------------------------电学实验专题
测电动势和内阻
(1)直接法:外电路断开时,用电压表测得的电压U为电动势E ;U=E
(2)通用方法:AV法测要考虑表本身的电阻,有内外接法;
①单一组数据计算,误差较大
②应该测出多组(u,I)值,最后算出平均值
③作图法处理数据,(u,I)值列表,在u--I图中描点,最后由u--I图线求出较精确的E和r。
(3)特殊方法 (一)即计算法:画出各种电路图
(一个电流表和两个定值电阻)
(一个电流表及一个电压表和一个滑动变阻器)
(一个电压表和两个定值电阻)
(二)测电源电动势ε和内阻r有甲、乙两种接法,如图
甲法中所测得ε和r都比真实值小,ε/r测=ε测/r真;
乙法中,ε测=ε真,且r测= r+rA。
(三)电源电动势ε也可用两阻值不同的电压表A、B测定,单独使用A表时,读数是UA,单独使用B表时,读数是UB,用A、B两表测量时,读数是U,则ε=UAUB/(UA-U)。
电阻的测量
AV法测:要考虑表本身的电阻,有内外接法;多组(u,I)值,列表由u--I图线求。怎样用作图法处理数据
欧姆表测:测量原理
两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
使用方法:机械调零、选择量程(大到小)、欧姆调零、测量读数时注意挡位(即倍率)、拨off挡。
注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
电桥法测:
半偏法测表电阻: 断s2,调R1使表满偏; 闭s2,调R2使表半偏.则R表=R2;
学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网
高考物理知识归纳(四)
---------------电学部分
一、静电场:
静电场:概念、规律特别多,注意理解及各规律的适用条件;电荷守恒定律,库仑定律
1.电荷守恒定律:元电荷
2.库仑定律: 条件:真空中、点电荷;静电力常量k=9×109Nm2/C2
三个自由点电荷的平衡问题:“三点共线,两同夹异,两大夹小”
中间电荷量较小且靠近两边中电量较小的;
常见电场的电场线分布熟记,特别是孤立正、负电荷,等量同种、异种电荷连线上及中垂线上的场强分布,电场线的特点及作用.
3.力的特性(E):只要有电荷存在周围就存在电场 ,电场中某位置场强:
(定义式)(真空点电荷) (匀强电场E、d共线)
4.两点间的电势差:U、UAB:(有无下标的区别)
静电力做功U是(电能其它形式的能) 电动势E是(其它形式的能电能)
=-UBA=-(UB-UA)与零势点选取无关)
电场力功W=qu=qEd=F电SE (与路径无关)
5.某点电势描述电场能的特性:(相对零势点而言)
理解电场线概念、特点;常见电场的电场线分布要求熟记,
特别是等量同种、异种电荷连线上及中垂线上的场强特点和规律
6.等势面(线)的特点,处于静电平衡导体是个等势体,其表面是个等势面,导体外表面附近的电场线垂直于导体表面(距导体远近不同的等势面的特点?),导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;表面曲率大的地方等势面越密,E越大,称为尖端放电。应用:静电感应,静电屏蔽
7.电场概念题思路:电场力的方向电场力做功电势能的变化(这些问题是电学基础)
8.电容器的两种情况分析
始终与电源相连U不变;当d增C减Q=CU减E=U/d减 仅变s时,E不变。
充电后断电源q不变:当d增c减u=q/c增E=u/d=不变,仅变d时,E不变;
9带电粒子在电场中的运动qU=mv2;侧移y=,偏角tgф=
① 加速
②偏转(类平抛)平行E方向:L=vot
竖直:
tg=(θ为速度方向与水平方向夹角)
速度:Vx=V0 Vy =at (为速度与水平方向夹角)
位移:Sx= V0 t Sy = (为位移与水平方向的夹角)
③圆周运动
④在周期性变化电场作用下的运动
结论:
①不论带电粒子的m、q如何,在同一电场中由静止加速后,再进入同一偏转电场,它们飞出时的侧移和偏转角是相同的(即它们的运动轨迹相同)
②出场速度的反向延长线跟入射速度相交于O点,粒子好象从中心点射出一样 (即)
证: (的含义?)
二、恒定电流:
I=(定义) I=nesv(微观) I= R=(定义) 电阻定律:R=(决定)
部分电路欧姆定律: U=IR 闭合电路欧姆定律:I =
路端电压: U = e -I r= IR 输出功率: = Iε-Ir =
电源热功率: 电源效率: = =
电功: W=QU=UIt=I2Rt=U2t/R 电功率P==W/t =UI=U2/R=I2R 电热:Q=I2Rt
对于纯电阻电路: W=IUt= P=IU =
对于非纯电阻电路: W=IUt > P=IU>
E=I(R+r)=u外+u内=u外+Ir P电源=uIt= +E其它 P电源=IE=I U +I2Rt
单位:J ev=1.9×10-19J 度=kwh=3.6×106J 1u=931.5Mev
电路中串并联的特点和规律应相当熟悉
1、联电路和并联电路的特点(见下表):
串联电路
并联电路
两个基本特点
电压
U=U1+U2+U3+……
U=U1=U2=U3=……
电流
I=I1=I2=I3=……
I=I1+I2+I3+……
三个重要性质
电阻
R=R1+R2+R3+……
1/R=1/R1+1/R2+1/R3+……
R=
电压
U/R=U1/R1=U2/R2=U3/R3=……=I
IR=I1R1=I2R2=I3R3=……=U
功率
P/R=P1/R1=P2/R2=P3/R3=……=I2
PR=P1R1=P2R2=P3R3=……=U2
2、记住结论:①并联电路的总电阻小于任何一条支路的电阻;②当电路中的任何一个电阻的阻值增大时,电路的总电阻增大,反之则减小。
3、电路简化原则和方法
①原则:a、无电流的支路除去;b、电势相等的各点合并;c、理想导线可任意长短;d、理想电流表电阻为零,理想电压表电阻为无穷大;e、电压稳定时电容器可认为断路
②方法:a、电流分支法:先将各节点用字母标上,判定各支路元件的电流方向(若无电流可假设在总电路两端加上电压后判定),按电流流向,自左向右将各元件,结点,分支逐一画出,加工整理即可;b、等势点排列法:标出节点字母,判断出各结点电势的高低(电路无电压时可先假设在总电路两端加上电压),将各节点按电势高低自左向右排列,再将各节点间的支路画出,然后加工整理即可。注意以上两种方法应结合使用。
4、滑动变阻器的几种连接方式
a、限流连接:如图,变阻器与负载元件串联,电路中总电压为U,此时负载Rx的电压调节范围红为,其中Rp起分压作用,一般称为限流电阻,滑线变阻器的连接称为限流连接。
b 、分压连接:如图,变阻器一部分与负载并联,当滑片滑动时,两部分电阻丝的长度发生变化,对应电阻也发生变化,根据串联电阻的分压原理,其中UAP= ,当滑片P自A端向B端滑动时,负载上的电压范围为0~U,显然比限流时调节范围大,R起分压作用,滑动变阻器称为分压器,此连接方式为分压连接。
一般说来,当滑动变阻器的阻值范围比用电器的电阻小得多时,做分压器使用好;反之做限流器使用好。
5、含电容器的电路:分析此问题的关键是找出稳定后,电容器两端的电压。
6、电路故障分析:电路不能正常工作,就是发生了故障,要求掌握断路、短路造成的故障分析。
路端电压随电流的变化图线中注意坐标原点是否都从零开始
电路动态变化分析(高考的热点)各灯、表的变化情况
1程序法:局部变化R总I总先讨论电路中不变部分(如:r)最后讨论变化部分
局部变化再讨论其它
2直观法:
①任一个R增必引起通过该电阻的电流减小,其两端电压UR增加.(本身电流、电压)
②任一个R增必引起与之并联支路电流I并增加; 与之串联支路电压U串减小(称串反并同法)
当R=r时,电源输出功率最大为Pmax=E2/4r而效率只有50%,
路端电压跟负载的关系
(1)路端电压:外电路的电势降落,也就是外电路两端的电压,通常叫做路端电压。
(2)路端电压跟负载的关系
当外电阻增大时,电流减小,路端电压增大;当外电阻减小时,电流增大,路端电压减小。
定性分析:R↑→I(=)↓→Ir↓→U(=E-Ir)↑
R↓→I(=)↑→Ir↑→U(=E-Ir)↓
|