上海市2009年高考模拟试题汇编
数列
一、填空题
1、(2009上海九校联考)已知数列的前项和为,若,则 .
128
2、((2009上海八校联考)在数列中,,且,_________。
2550
3、(2009冠龙高级中学3月月考)若数列中,,则数列中的项的最小值为_________。
4
4、(2009闵行三中模拟)已知是等比数列,,则= 。
()
5、(2009上海十四校联考)若数列为“等方比数列”。则“数列是等方比数列”是“数列是等方比数列”的 条件
2
二、选择题
1、(2009上海十四校联考)无穷等比数列…各项的和等于 ( )
A. B. C. D.
B
2、(2009上海卢湾区4月模考)
设数列的前项之和为,若(),则 ( )
A.是等差数列,但不是等比数列; B.是等比数列,但不是等差数列;
C.是等差数列,或是等比数列; D.可以既不是等比数列,也不是等差数列.
三、解答题
1、(2009上海卢湾区4月模考)已知数列的前项和为,且对任意正整数,都满足:,其中为实数.
(1)求数列的通项公式;
(2)若为杨辉三角第行中所有数的和,即,为杨辉三角前行中所有数的和,亦即为数列的前项和,求的值.
解:(1) 由已知,,相减得,由得,又,得,故数列是一个以为首项,以为公比的等比数列. (4分)
从而 ; (6分)
(2), (7分)
又,故, (11分)
于是,
当,即时,,
当,即时,,
当,即时,不存在. (14分)
2、(2009上海八校联考)已知点列顺次为直线上的点,点列顺次为轴上的点,其中,对任意的,点、、构成以为顶点的等腰三角形。
(1)证明:数列是等差数列;
(2)求证:对任意的,是常数,并求数列的通项公式;
(3)对上述等腰三角形添加适当条件,提出一个问题,并做出解答。
(根据所提问题及解答的完整程度,分档次给分)
解: (1)依题意有,于是.
所以数列是等差数列. .4分
(2)由题意得,即 , () ①
所以又有. ②
由②①得:, 所以是常数. 6分
由都是等差数列.
,那么得 ,
. ( 8分
故 10分
(3) 提出问题①:若等腰三角形中,是否有直角三角形,若有,求出实数
提出问题②:若等腰三角形中,是否有正三角形,若有,求出实数
解:问题① 11分
当为奇数时,,所以
当为偶数时,所以
作轴,垂足为则,要使等腰三角形为直角三角形,必须且只须:. 13分
当为奇数时,有,即 ①
, 当, 不合题意.15分
当为偶数时,有 ,,同理可求得
当时,不合题意. 17分
综上所述,使等腰三角形中,有直角三角形,的值为或或. 18分
解:问题② 11分
当为奇数时,,所以
当为偶数时,所以
作轴,垂足为则,要使等腰三角形为正三角形,必须且只须:. 13分
当为奇数时,有,即 ①
, 当时,. 不合题意. 15分
当为偶数时,有 ,,同理可求得 .
;;当时,不合题意.17分
综上所述,使等腰三角形中,有正三角形,的值为
;; ;18分
3、(2009上海奉贤区模拟考)已知点集,其中,,点列在L中,为L与y轴的交点,等差数列的公差为1,。
(1)求数列的通项公式;
(2)若=,令;试用解析式写出关于的函数。
(3)若=,给定常数m(),是否存在,使得 ,若存在,求出的值;若不存在,请说明理由。
(1)y=? =(2x-b)+(b+1)=2x+1 -----(1分)
与轴的交点为,所以; -----(1分)
所以,即, -----(1分)
因为在上,所以,即 -----(1分)
(2)设 (),
即 () ----(1分)
(A)当时,
----(1分)
==,而,所以 ----(1分)
(B)当时, ----(1分)
= =, ----(1分)
而,所以 ----(1分)
因此() ----(1分)
(3)假设,使得 ,
(A)为奇数
(一)为奇数,则为偶数。则,。则,解得:与矛盾。 ----(1分)
(二)为偶数,则为奇数。则,。则,解得:(是正偶数)。 ----(1分)
(B)为偶数
(一)为奇数,则为奇数。则,。则,解得:(是正奇数)。 ----(1分)
(二)为偶数,则为偶数。则,。则,解得:与矛盾。 ----(1分)
由此得:对于给定常数m(),这样的总存在;当是奇数时,;当是偶数时,。 ----(1分)
4、(2009冠龙高级中学3月月考)由函数确定数列,,函数的反函数能确定数列,,若对于任意,都有,则称数列是数列的“自反数列”。
(1)若函数确定数列的自反数列为,求的通项公式;
(2)在(1)条件下,记为正数数列的调和平均数,若,为数列的前项和,为数列的调和平均数,求;
(3)已知正数数列的前项之和。求的表达式。
解:(1)由题意的:f ?1(x)== f(x)=,所以p = ?1,所以an=
(2) an=,dn==n,
Sn为数列{dn}的前n项和,Sn=,又Hn为数列{Sn}的调和平均数,
Hn=== ==
(3)因为正数数列{cn}的前n项之和Tn=(cn+),
所以c1=(c1+),解之得:c1=1,T1=1
当n≥2时,cn = Tn?Tn?1,所以2Tn = Tn?Tn?1 +,
Tn +Tn?1 = ,即:= n,
所以,= n?1,= n?2,……,=2,累加得:
=2+3+4+……+ n, =1+2+3+4+……+ n =,Tn=
5、(2009闵行三中模拟)已知点列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)顺次为一次函数图像上的点,点列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点An、Bn、An+1构成一个顶角的顶点为Bn的等腰三角形。
⑴求数列{yn}的通项公式,并证明{yn}是等差数列;
⑵证明xn+2-xn为常数,并求出数列{xn}的通项公式;
⑶在上述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由。
解:(1)(nÎN),∵yn+1-yn=,∴{yn}为等差数列 ………………4分
(2)因为与为等腰三角形.
所以,两式相减得 。………………7分
注:判断得2分,证明得1分
∴x1,x3,x5,…,x2n-1及x2,x4,x6 ,…,x2n都是公差为2的等差数列,………………6分
∴ ………………10分
(3)要使AnBnAn+1为直角三形,则 |AnAn+1|=2=2()Þxn+1-xn=2()
当n为奇数时,xn+1=n+1-a,xn=n+a-1,∴xn+1-xn=2(1-a).
Þ2(1-a)=2() Þa=(n为奇数,0<a<1) (*)
取n=1,得a=,取n=3,得a=,若n≥5,则(*)无解; ………………14分
当偶数时,xn+1=n+a,xn=n-a,∴xn+1-xn=
∴
取n=2,得a=,若n≥4,则(*¢)无解.
综上可知,存在直角三形,此时a的值为、、. ………………18分
6、(2009上海青浦区)设数列的前和为,已知,,,,
一般地,().
(1)求;
(2)求;
(3)求和:.
(1); ……3分
(2)当时,()
, ……6分
所以,(). ……8分
(3)与(2)同理可求得:, ……10分
设=,
则,(用等比数列前n项和公式的推导方法),相减得
,所以
. ……14分